Net photosynthetic rate (PN), transpiration rate (E), stomatal conductance (gs), leaf water potential (ψleaf), leaf nitrogen content, and photosynthetic nitrogen use efficiency (PNUE) were compared between a typical C4 plant, Agriophyllum squarrosum and a C3 plant, Leymus chinensis, in Hunshandak Sandland, China. The plant species showed different diurnal gas exchange patterns on June 12-14 when photosynthetic photon flux density (PPFD), air temperature (Tair), and water potential were moderate. PN, E, and
gs of A. squarrosum showed distinct single peak while those of L. chinensis were depressed at noon and had two peaks in their diurnal courses. Gas exchange traits of both species showed midday depression under higher photosynthetic photon flux density (PPFD) and T air when Ψleaf was significantly low down on August 6-8. However, those of A. squarrosum were depressed less seriously. Moreover, A. squarrosum had higher PN, Ψleaf, water use efficiency (WUE), and PNUE than L. chinensis. Thus A. squarrosum was much more tolerant to heat and high irradiance and could utilise the resources on sand area more efficiently than L. chinensis. Hence species like A. squarrosum may be introduced and protected to reconstruct the degraded sand dunes because of their higher tolerance to stress and higher resource use efficiency. and S. L. Niu ... [et al.].
The differences in net photosynthetic rate (PN), transpiration rate (E), and water use efficiency (WUE) between the vegetative and reproductive shoots of three native grass species from the grassland of northeastern China [grey-green and yellow green populations of Leymus chinensis (Trin.) Tzvel., Puccinellia tenuiflora (Griseb) Scrib & Merr, Puccinellia chinampoensis Ohwi] were compared. The two type shoots experienced similar habitats, but differed in leaf life-span and leaf area. The leaf PN and WUE for the vegetative shoots were significantly higher than those for the reproductive shoots in the grasses, while their E were remarked lower in the dry season. Relative lower leaf PN and WUE for the reproductive shoots of grassland grasses may explain the facts of lower seed production and the subordinate role of seed in the grassland renewal in north-eastern China.