High plasma triglyceride (TG) level is a major independent risk factor of coronary heart disease. A newly identified Apolipoprotein A5 (Apoa5) gene has been shown to play an important role in determining plasma TG concentrations in humans and mice. Prague hereditary hypertriglyceridemic (HTG) rats are a useful model of human hypertriglyceridemia and other symptoms of metabolic syndrome. Thus, the variation of Apoa5 gene and its expression were studied in this strain under normal conditions and after chronic fructose loading. Lewis and Wistar rats served as normotriglyceridemic controls. Plasma TG were significantly higher in HTG rats in comparison with both control strains. Sequence analysis of the rat Apoa5 gene revealed the existence of two introns. However, screening of the coding regions and intron-exon boundaries of Apoa5 gene did not indicate any mutation of this gene in HTG rats in comparison with Lewis and Wistar ones. Under the basal conditions the expression of Apoa5 was lower in all age groups of HTG rats compared to Wistar animals. Furthermore, during chronic fructose loading there were no significant changes of Apoa5 expression in HTG rats, although plasma TG levels rose 3-4 times within first two days of fructose loading and were increased during the whole period of fructose treatment. In conclusion, Apoa5 does not seem to be a genetic determinant of hypertriglyceridemia in HTG rats. The absence of significant changes in Apoa5 gene expression during chronic fructose-induced TG elevation excludes its major role in mechanisms compensating severe hypertriglyceridemia.
The aim of this study was to compare the vascular reactivity and morphology of iliac artery (IA) in adult spontaneously hypertensive rats (SHR) and hereditary hypertriglyceridemic (hHTG) rats. The isolated rings of iliac artery (IA) from Wistar rats (controls), SHR and hHTG rats were used for measurement of relaxant responses to acetylcholine (ACh) and contractile responses to noradrenaline (NA). Morphological changes of IA were measured using light microscopy. Systolic blood pressure (BP) measured by plethysmographic method was increased in SHR approximately by 88 % and in hHTG rats by 44 % compared to controls. BP increase was accompanied by cardiac hypertrophy. In both SHR and hHTG groups (experimental groups) reduced relaxation to ACh and enhanced maximal contraction and sensitivity to adrenergic stimuli were observed. The sensitivity to NA in SHR was higher also in comparison with hHTG. Geometry
of IA in both experimental groups revealed increased wall thickness and wall cross-sectional area, in SHR even in comparison with hHTG. Inner diameter was decreased in both experimental groups. Thus, independently of etiology, hypertension in both models was connected with impaired endothelial function accompanied by structural alterations of
IA. A degree of BP elevation was associated with arterial wall hypertrophy and increased contractile sensitivity.
High blood pressure, increased level of cholesterol, diabetes, hypertriglyceridemia and obesity are risk factors accompanied metabolic syndrome. The aim of the study was to compare geometry of carotid artery (AC) of 3-week-old (3w) and 52-week-old (52w) hereditary hypertriglyceridemic rats (hHTG) and spontaneously hypertensive rats (SHR) which represent a genetic model of human essential hypertension with age-matched Wistar rats. After sacrificing the rats were perfused with a glutaraldehyde fixative under the pressure 90 mm Hg (3w) and 120 mm Hg (52w) for 10 min via cannula placed into left ventricle. Middle part of AC was excised and processed according to standard electron
microscopy procedure. Geometry of AC was evaluated in light microscopy. SHR vs. Wistar rats: BP of 3w did not differ, in 52w it was increased; cardiac hypertrophy was found in both ages; wall thickness (WT) and cross sectional area (CSA) in 3w did not differ, in 52w both were increased; inner diameter (ID) in 3w and 52w was decreased; WT/ID was increased in both ages. Hereditary HTG vs. Wistar rats: BP was increased in both periods; cardiac hypertrophy was observed in 3w; WT in 3w was decreased, in 52w it was increased; CSA and ID were decreased in both ages; WT/ID was increased only in 52w. Discrepancies between development of BP, cardiac hypertrophy in SHR and hHTG rats were observed. Alterations of BP were not in harmony with alterations in geometry of carotid arteries in both SHR and hHTG rats. We suggest that BP is not the main stimuli evoked hemodynamic and structural alterations of cardiovascular system in ontogenic development of SHR and hHTG rats.
Reactive dicarbonyls stimulate production of advanced glycation endproducts, increase oxidative stress and inflammation and contribute to the development of vascular complications. We measured concentrations of dicarbonyls - methylglyoxal (MG), glyoxal (GL) and 3-deoxyglucosone (3-DG) - in the heart and kidney of a model of metabolic syndrome - hereditary hypertriglyceridemic rats (HHTg) and explored its modulation by metformin. Adult HHTg rats were fed a standard diet with or without metformin (300 mg/kg b.w.) and dicarbonyl levels and metabolic parameters were measured. HHTg rats had markedly elevated serum levels of triacylglycerols (p<0.001), FFA (p<0.01) and hepatic triacylglycerols (p<0.001) along with increased concentrations of reactive dicarbonyls in myocardium (MG: p<0.001; GL: p<0.01; 3-DG: p<0.01) and kidney cortex (MG: p<0.01). Metformin treatment significantly reduced reactive dicarbonyls in the myocardium (MG: p<0.05, GL: p<0.05, 3-DG: p<0.01) along with increase of myocardial concentrations of reduced glutathione (p˂0.01) and glyoxalase 1 mRNA expression (p˂0.05). Metformin did not have any significant effect on dicarbonyls, glutathione or on glyoxalase 1 expression in kidney cortex. Chronically elevated hypertriglyceridemia was associated with increased levels of dicarbonyls in heart and kidney. Beneficial effects of metformin on reactive dicarbonyls and glyoxalase in the heart could contribute to its cardioprotective effects., H. Malínská, V. Škop, J. Trnovská, I. Marková, P. Svoboda, L. Kazdová, M. Haluzik., and Seznam literatury
Attention has recently been focused on endothelial function after a single high-fat meal, i.e. on the anticipated direct atherogenic effect of triglyceride-rich lipoproteins. Our study was designed to investigate the effect of a low-fat diet given for four weeks followed by a high-fat diet for another four weeks. At the end of each dietary period, a non-invasive ultrasound investigation of endothelial function of the brachial artery was performed along with laboratory tests. Endothelial function was measured immediately before the dietary load and after three and six hours in 11 healthy volunteers. The results were expressed as percentage of the changes in artery diameter at rest and during hyperemia; the data were processed using computer technology. When compared to the low-fat regimen, the total cholesterol content rose after the high-fat diet from 4.28 mmol/l to 5.15 mmol/l (p<0.05) in the whole group of volunteers. There was no difference between both dietary regimens in baseline triglycerides. The brachial artery dilatation under basal conditions was 5.26±2.88 mm after the high-fat diet compared with the value of 3.13±3.01 mm (p<0.05) after the low-fat diet. When measured individually endothelial function in the whole group of volunteers in the course of the day, the degree of arterial dilatation after one month on low-fat diet was 3.13±3.0 %, 3.88±2.5 % and 5.23±3.3 % at single measurement. When comparing arterial dilatation at two closest measurements, a non-significant trend, p>0.05 was seen in either case. The following values were obtained after one month on the high-fat diet: 5.26±2.9 %, 4.47±1.7 %, and 6.2±3.6 %; again showing a non-significant trend of p>0.05. In this study, a single high-fat meal at the different dietary regimen did not significantly influence the vasoreactivity of the brachial artery in young volunteers., T. Šejda, J. Kovář, J. Piťha, R. Cífková, E. Švandová, R. Poledne., and Obsahuje bibliografii