The aim of the studies was to ascertain if adenosine is able to co-operate with selected hematopoietic growth factors and cytokines, namely with granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), stem cell factor (SCF), interleukin-3 (IL-3), and interleukin-11 (IL-11), in inducing the growth of colonies from hematopoietic progenitor cells for granulocytes and macrophages (GM-CFC) from normal bone marrow cells in vitro. Adenosine was found not to produce any colonies when present in the cultures as the only potential stimulator. All the tested cytokines and growth factors were observed to induce the growth of distinct numbers of GM-CFC colonies, with the exception of IL-11. When suboptimal concentrations of the evaluated cytokines and growth factors were tested in the cultures in which various concentrations of adenosine were concomitantly present, mutually potentiating effects were found in the case of IL-3 and SCF. These results confirm the role of adenosine in regulation of granulopoiesis and predict IL-3 and SCF as candidates for further in vivo studies of their combined administration with adenosine.
The effects of liposomal muramyl tripeptide phosphatidylethanolamine (MTP-PE/MLV, radioprotective immunomodulator; 10 mg/kg) and indomethacin (INDO, inhibitor of prostaglandin production; 2 mg/kg) on post-irradiation recovery of hematopoietic functions in mice were investigated. Two agents with distinct radioprotective mechanisms were administered alone or in combination 24 h and 3 h before exposure to 7 Gy 60Co radiation. In the post-irradiation period (3-14 days) combined pre-treatment of mice accelerated recovery of bone marrow cellularity, weight of spleen and myelopoietic and erythropoietic activity in both hematopoietic organs, compared to treatment with MTP-PE/MLV or indomethacin alone. In the peripheral blood, improved radioprotective effects of combined drug administration were found in the recovery of reticulocytes and platelet count. No further significant differences in the recovery of leukocyte count were observed in the examined groups until post-irradiation day 14. Within the first 3-6 post-irradiation days, the bone marrow and peripheral blood smears of mice pre-treated with indomethacin alone or its combination with MTP-PE/MLV more frequently featured blast cells and large cells with abundant cytoplasm which could be considered the hematopoietic stem cells., N. O. Macková, P. Fedoročko., and Obsahuje bibliografii
The aim of the study was to investigate the effects of stable adenosine receptor agonists on bone marrow hematopoiesis by utilizing the model of hematopoietic damage induced by 5-fluorouracil (5-FU), a cycle-specific cytotoxic agent. Effects of a non-selective agonist NECA activating all the known adenosine receptors (A1, A2A, A2B, A3) and of the selective agonists for A1 (CPA), A2A (CGS 21680), and A3 (IB-MECA) adenosine receptors were investigated. Experiments were performed with B10CBAF1 mice under in vivo conditions. Adenosine receptor agonists were given in single injections before 5-FU administration and the effects were determined 4 days later. The numbers of femoral marrow nucleated cells and hematopoietic progenitor cells (CFC-GM and BFU-E) were taken as indices of the effects. The non-selective agonist NECA given at a dose of 200 nmol/kg induced biphasic time-dependent effects, i.e. protection and sensitization, when given 10 h and 22 h before 5-FU administration, respectively. The use of isomolar doses of selective receptor agonists indicated that the protective effects of NECA were induced by activation of A2A and A2B receptors, while the sensitizing action of NECA was mediated via A3 receptors. In addition, it was observed that A1 receptors induced protection when activated by administration of CPA 22 h before 5-FU. These findings are discussed with respect to the action of adenosine receptor agonists on the cell cycle state and on the cell cycle-independent cellular protective mechanisms.
Positive effects of repeated administration of diclofenac, an inhibitor of prostaglandin synthesis, in terms of prevention of tumor development and stimulation of hematopoiesis have been observed in C3H mice transplanted subcutaneously with G:5:113 fibrosarcoma cells. Fourteen-day treatment with diclofenac (3.75 mg/kg/day) started from day 5 after tumor cell transplantation. Measurements of tumors and hematological examinations were performed on day 30. The results strongly suggest the possibility that inhibitors of prostaglandin synthesis (non-steroidal anti-inflammatory drugs) may be used in oncological practice where the observed effects are highly desirable., M. Hofer, Z. Hoferová, P. Fedoročko, N. O. Macková., and Obsahuje bibliografii