The aim of the study was to investigate the effects of stable adenosine receptor agonists on bone marrow hematopoiesis by utilizing the model of hematopoietic damage induced by 5-fluorouracil (5-FU), a cycle-specific cytotoxic agent. Effects of a non-selective agonist NECA activating all the known adenosine receptors (A1, A2A, A2B, A3) and of the selective agonists for A1 (CPA), A2A (CGS 21680), and A3 (IB-MECA) adenosine receptors were investigated. Experiments were performed with B10CBAF1 mice under in vivo conditions. Adenosine receptor agonists were given in single injections before 5-FU administration and the effects were determined 4 days later. The numbers of femoral marrow nucleated cells and hematopoietic progenitor cells (CFC-GM and BFU-E) were taken as indices of the effects. The non-selective agonist NECA given at a dose of 200 nmol/kg induced biphasic time-dependent effects, i.e. protection and sensitization, when given 10 h and 22 h before 5-FU administration, respectively. The use of isomolar doses of selective receptor agonists indicated that the protective effects of NECA were induced by activation of A2A and A2B receptors, while the sensitizing action of NECA was mediated via A3 receptors. In addition, it was observed that A1 receptors induced protection when activated by administration of CPA 22 h before 5-FU. These findings are discussed with respect to the action of adenosine receptor agonists on the cell cycle state and on the cell cycle-independent cellular protective mechanisms.
An impairment of the survival of mice subjected to whole-body gamma-irradiation with a lethal dose of 10 Gy and treated with a repeated postirradiation administration of prostaglandin synthesis inhibitors (PGSls), indomcthacin or diclofenac, was observed. Morphological examination of the gastrointestinal tract and the estimation of blood loss into its lumen in animals treated with diclofenac did not show serious damage such as haemorrhages or perforation, but revealed structural injury to the intestinal mucosa indicating inflammatory processes. The lesions found arc supposed to be connected with increased intestinal permeability which leads to endotoxin escape from the gut and a subsequent increased mortality rate of irradiated animals. It may be concluded that PGSls are not suitable for the management of radiation sickness after an exposure to lethal doses of ionizing radiation
The effects of diclofenac, an inhibitor of prostaglandin synthesis, were studied on the acute radiation syndrome elicited in mice by fractional irradiation. Several haematological parameters were evaluated in mice irradiated with 5x2 Gy and 3x, 4x, or 5x3 Gy (intervals between fractions 24 h) from a 60Co gamma-ray source. The animals were treated with diclofenac either before each fraction or only once before the last fraction. The survival of mice was recorded after the irradiation regimen of 5x3 Gy followed by a "top-up" dose of 3.5 Gy given 24 h after the last radiation fraction. Statistically significant enhancement of the endogenous spleen colony formation and of leukopoiesis was found in mice treated with diclofenac repeatedly, as compared with both saline-treated irradiated controls and animals administered a single diclofenac dose, if a sublethal total radiation dose had been accumulated. However, following accumulation of a lethal total radiation dose, slightly impaired survival was observed in mice given diclofenac. It follows from the results that diclofenac is a suitable drug for enhancing leukopoiesis impaired by sublethal fractionated irradiation. Nevertheless, undesirable side effects of this drug negatively influence the survival of experimental animals following a lethal accumulated radiation dose.
Recent results of the authors have demonstrated that the elevation of extracellular adenosine induced by the combined administration of dipyridamole, a drug inhibiting the cellular uptake of adenosine, and adenosine monophosphate (AMP), a soluble adenosine prodrug, mediates radioprotective effects in mice. Furthermore, it has been shown that this action is induced by at least two mechanisms: (1) protection by hypoxia as a result of the effects of treatment on the cardiovascular system (bradycardia, vasodilation), and (2) an enhanced regeneration of the radiation-perturbed hematopoiesis. Here, it was ascertained that the joint use of an optimal dose of noradrenaline given with dipyridamole and AMP combination eliminates the hypothermic and hypoxic effects of the treatment, but preserves the radioprotective action of dipyridamole and AMP combination in terms of hematopoietic recovery and partially also survival enhancing effects of the drugs in gamma-irradiated mice. These findings might be of importance for attempts to obtain available and tolerable radioprotective pharmacological prescriptions for clinical use.
Radioprotective effects of two non-steroidal anti-inflammatory drugs, flurbiprofen (FBP) and its novel nitroderivative flurbiprofen 4-nitroxybutylester (NO-FBP), which exhibits decreased gastrointestinal toxicity, were compared in mice. The drugs were administered in equimolar single doses, 2 hours before whole-body gamma- irradiation of the animals. After a sublethal radiation dose of 6.5 Gy, significantly increased numbers of endogenous haemopoietic spleen colonies and enhanced granulopoiesis were found in mice given either FBP or NO-FBP, when compared to vehicle-treated controls. There were no differences in the effectiveness of either drug to enhance postirradiation haemopoietic recovery. Survival of FBP- or NO-FBP-treated mice subjected to a lethal dose of 9.5 Gy was slightly but insignificantly enhanced, both drugs showing the same effect. These results clearly indicate the ability of both drugs to enhance haemopoietic recovery after sublethal radiation exposure and the absence of unfavourable effects under higher radiation doses. Because of its lower potential for gastrointestinal damage, NO-FBP seems to be a promising drug, which can find a use in the protection of postirradiation myelosuppression.