Carbon dioxide, a natural acidic gas, may be ušed for in vivo titration of the buffers in the compartments of cells that contain carbonic anhydíase in intact leaves. A gas systém for the measurement of the CO2 capacity (total inorganic carbon content) of leaves under different extemal CO2 concentrations has been developed. The systém consists of a leaf chamber and of two open (flow-through) channels, one for pre- loading the leaf with CO2 and the other for measurement of the desolubilized CO2. CO2 concentration in the loading channel may be adjusted from 0.03 to 20 %, while CO2 free air is flowing in the burst (desolubilization) channel. The leaf chamber (4.3 X 4.3 X 0.3 cm^) is switched either into the loading channel or into the burst channel. After loading the leaf with high CO2 in the dark the .chamber is switched into the burst channel and the desolubilized CO2 is measured. Preliminary measurements show that the CO2 capacity of a sunflower leaf decreases when the CO2 concentration is increased from 0.03 to 15 %, because of saturation of buffers. The systém can be ušed for direct, non-destructive measurements of pH and buffer capacity in leaf chloroplasts in order to investigate the influence of pH on photosynthesis, the operation of proton pumps and other pH-stabilising mechanisms.
Simple, accurate, and non-destructive methods for determining leaf area (LA) of plants are important for many experimental comparisons. Determining the individual LA of sunflower (Helianthus annuus L.) involves measurements of leaf parameters such as length (L) and width (W), or some combinations of these parameters. Two field experiments were carried out during 2003 and 2004 to compare predictive equations of sunflower LAs using simple linear measurements. Regression analyses of LA vs. L and W revealed several equations that could be used for estimating the area of individual sunflower leaves. A linear equation having W2 as the independent variable provided the most accurate estimate (r 2 = 0.98, MSE = 985) of sunflower LA. Validation of the equation having W2 of leaves measured in the 2004 experiment showed that the correlation between calculated and measured areas was very high. and Y. Rouphael ... [et al.].
Mutants with altered leaf morphology are useful as markers for the study of genetic systems and for probing the leaf differentiation process. One such mutant with deficient greening and altered development of the leaf mesophyll appeared in an inbred line of sunflower (Helianthus annuus L.). The objectives of the present study were to determine the inheritance of the mutant leaf trait and its morphological characterisation. The mutation, named mesophyll cell defective1 (mcd1), has pleiotropic effects and it is inherited as a monogenic recessive. The structure and tissue organization of mcd1 leaves are disrupted. In mcd1 leaves, the mesophyll has prominent intercellular spaces, and palisade and spongy tissues are not properly shaped. The mutant palisade cells also appear to be more vacuolated and with a reduced number of chloroplasts than the wild type leaves of equivalent developmental stage. The lamina thickness of mcd1 leaves is greatly variable and in some areas no mesophyll cells are present between the adaxial and abaxial epidermis. The leaf area of the mcd1 mutant is extremely reduced as well as the stem height. A deficient accumulation of photosynthetic pigments characterizes both cotyledons and leaves of the mutant. In mcd1 leaves, chlorophyll (Chl) fluorescence imaging evidences a spatial heterogeneity of leaf photosynthetic performance. Little black points, which correspond to photosystem II (PSII) maximum efficiency (Fv/Fm) values close to zero, characterize the mcd1 leaves. Similarly, the lightadapted quantum efficiency (ΦPSII) values show a homogeneous distribution over wild type leaf lamina, while the damaged areas in mcd1 leaves, represented by yellow zones, are prominent. In conclusion, the loss of function of the MCD1 gene in Helianthus annuus is correlated with a variegated leaf phenotype characterized by a localized destruction of mesophyll morphogenesis and defeat of PSII activity. and M. Fambrini ... [et al.].