In the xantha1 (xan1) mutant of sunflower (Helianthus annuus L.), the effects on organ anatomy and seedling growth did correlate to the alteration of chloroplast biogenesis. The xan1 seedlings grown under 165 µmol(photon) m-2 s-1 revealed a severely altered chloroplast ultrastructure in cotyledons and leaves. Cross-sections or clarified tissues of the xan1 cotyledons did not show evident alterations with respect to normal cotyledons suggesting that the impairment of chloroplast biogenesis has negligible consequences on embryonic leaves. By contrast, the analysis of xan1 leaves showed that the defects in chloroplast biogenesis were correlated to a drastic reduction of organ size and to a clear enhancement of the trichome growth. The differentiation of palisade and spongy parenchyma in cotyledons and leaves of the xan1 mutant was normal but both organs displayed a drastic reduction in the plastid number with respect to wild type. In addition, xan1 hypocotyls showed a reduced development of the main vascular bundles in comparison with normal seedlings and an undersized central cylinder of the primary root. The exogenous supply of sucrose was not sufficient to revert in vitro the deficit of xan1 growth and the constraints in morphogenetic processes. and M. Fambrini ... [et al.].
Six leaf samplings were conducted in two sunflower (Helianthus annuus L.) hybrids during the 2006 growing season in order to evaluate a simple model proposed for leaf area (LA) estimation. A total of 144 leaves were processed using an image analysis system and LA, maximum leaf width (W) [cm], and midvein length (L) [cm] were measured. Also, LA was estimated using the model proposed by Rouphael et al. (2007). Measured LA was exponentially related with L and W, and the W-LA relationships showed higher r2. Estimated LA was strongly and exponentially related with L. Strong, linear relationships with high r2 between estimated and measured LA confirmed the high predictability of the proposed model. and J. T. Tsialtas, N. Maslaris.
In the High Plains of western Kansas, USA, the convergent lady beetle Hippodamia convergens Guérin completes a spring generation feeding on cereal aphids in winter wheat before leaving fields in large numbers around the time of harvest. In late May, large aggregations of coccinellids form on wild sunflowers, Helianthus annuus, and certain other weeds, that appear to serve as important sources of water absorption for the beetles, and other beneficial insects, during the dry prairie summer. Adult beetles were collected from sunflower plants and held in four treatments: (1) access to water only, (2) access to sunflower stalks only, (3) eggs of Ephestia kuehniella provided ad libitum + water and, (4) greenbug, Schizaphis graminum Rondani provided ad libitum. Most females fed greenbug matured eggs in less than a week and only a few entered reproductive diapause. In contrast, more than half of the females fed Ephestia eggs, an inferior diet, entered reproductive diapause, and those that matured eggs required an average of almost three weeks to do so. Time to 50% mortality was 7 days for beetles receiving only water, and 12 days for those receiving only sunflower stalks, whereupon all survivors were fed greenbug. Even after feeding on greenbugs for a month, less than half of the surviving females in these two treatments produced eggs. We conclude that reproductive diapause is an important adaptation for improving H. convergens survival during summer when aphids are scarce, although females will forgo diapause if they have continuous access to high quality prey.
In sunflower (Helianthus annuus L.) grown under controlled conditions and subjected to drought by withholding watering, net photosynthetic rate (PN) and stomatal conductance (gs) of attached leaves decreased as leaf water potential (Ψw) declined from -0.3 to -2.9 MPa. Although gs decreased over the whole range of Ψw, nearly constant values in the intercellular CO2 concentrations (Ci) were observed as Ψw decreased to -1.8 MPa, but Ci increased as Ψw decreased further. Relative quantum yield, photochemical quenching, and the apparent quantum yield of photosynthesis decreased with water deficit, whereas non-photochemical quenching (qNP) increased progressively. A highly significant negative relationship between qNP and ATP content was observed. Water deficit did not alter the pyridine nucleotide concentration but decreased ATP content suggesting metabolic impairment. At a photon flux density of 550 µmol m-2 s-1, the allocation of electrons from photosystem (PS) 2 to O2 reduction was increased by 51 %, while the allocation to CO2 assimilation was diminished by 32 %, as Ψw declined from -0.3 to -2.9 MPa. A significant linear relationship between mean PN and the rate of total linear electron transport was observed in well watered plants, the correlation becoming curvilinear when water deficit increased. The maximum quantum yield of PS2 was not affected by water deficit, whereas qP declined only at very severe stress and the excess photon energy was dissipated by increasing qNP indicating that a greater proportion of the energy was thermally dissipated. This accounted for the apparent down-regulation of PS2 and supported the protective role of qNP against photoinhibition in sunflower. and W. Tezara, S. Driscoll, D. W. Lawlor.