In this work, design and synthesis of high-molecular-weight N-(2- hydroxypropyl)methacrylamide-based polymer drug delivery systems tailored for cancer therapy is summarized. Moreover, the influence of their architecture on tumor accumulation and in vivo anti-cancer efficacy is discussed. Mainly, the high-molecularweight delivery systems, such as branched, grafted, multi-block, star-like or micellar systems, with molecular weights greater than the renal threshold are discussed and reviewed in detail., L. Kostka, T. Etrych., and Obsahuje bibliografii
A tumor-targeting drug delivery system consists of a tumor recognition moiety and a directly linked cytotoxic agent or an agent attached to a water-soluble synthetic polymer carrier through a suitable linker. Conjugation of a drug with a polymer carrier can change its solubility, toxicity, biodistribution, blood clearance and therapeutic specificity. Increased therapeutic specificity of a polymer drug can be achieved by the attachment of a targeting moiety (e.g. a lectin, protein, antibody, or peptide) that specifically interacts with receptors on the target cells. A large number of tumor-specific peptides were described in recent years. After a short introduction, some important examples of peptide-targeted conjugates will be described and discussed., E. Böhmová, R. Pola., and Obsahuje bibliografii
Novel star polymers based on the water-soluble N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer and cyclodextrin were synthesized and the physico-chemical behavior of these precursors was studied. Semitelechelic HPMA copolymers were grafted onto the cyclodextrin core, thus forming star-like structure. Both prepared systems were designed as possible polymer carriers for the controlled release of cytostatic drugs, which after the drug release and degradation will be eliminated from the organism. Two synthesis approaches were used to obtain similar polymer carriers with different degradation rates. All the polymers were prepared by reversible additionfragmentation chain-transfer polymerization, which guarantees low dispersity of the prepared systems., L. Kotrchová, T. Etrych., and Obsahuje bibliografii
Cytarabine is one of the most efficient drugs in the treatment of hematological malignancies. In this work, we describe the synthesis and characterization of two different polymer conjugates of cytarabine that were designed for the controlled release of cytarabine within the leukemia cells. Reactive copolymers of N-(2-hydroxypropyl)methacrylamide (HPMA) and 3-(3-methacrylamidopropanoyl)thiazolidine-2-thione) or 3-(Nmethacryloylglycyl- phenylalanylleucylglycyl)thiazolidine-2-thione were used in the study as reactive polymer precursors for reaction with cytarabine. The enzymatic release of cytarabine from the conjugate containing a GFLG spacer utilizing cathepsin B was verified. In addition to enzymolysis, the pH-dependent hydrolysis of cytarabine from both copolymers was also confirmed. Approximately 40 % and 20 % of the drug was released by spontaneous hydrolysis at pH 7.4 within 72 h from the polymer conjugates with the GFLG and β-Ala spacers, respectively. At pH 6.0, the spontaneous hydrolysis slowed down, and less than 10 % of the drug was liberated within 72 h. The results of the cytotoxicity evaluation of the polymer conjugates in vitro against various cell lines showed that the cytotoxicity of the polymer conjugates is approximately three times lower in comparison to free cytarabine., R. Pola, O. Janoušková, T. Etrych., and Obsahuje bibliografii