Under natural and greenhouse conditions we found a significant reduction in the physiological and biochemical constituents in leaves of five disease types when compared to healthy ones. The growth characteristics such as height, dry mass, photosynthetic and transpiration rates, stomatal conductance, and water use efficiency were reduced significantly more in susceptible cv. TRI-2024 than in tolerant cv. TRI-2025. Also contents of total sugars, nitrogen, amino acids, proteins, polyphenols, and catechin were reduced in diseased plant leaves. However, the reduction was more prominent in susceptible than tolerant cultivar. Canker size and barker moisture content were larger in the susceptible cultivar than in the tolerant cultivar. and P. Ponmurugan, U. I. Baby, R. Rajkumar.
Net photosynthetic rate (PN) in the mother leaves was higher in the drought tolerant (DT) clones of tea (Camellia sinensis) while liberation of the fixed 14C in light from the mother leaves was higher in the drought susceptible (DS) clones. The DT clones translocated more photosynthates to the crop shoots (three leaves and a bud) from the mother leaf than the DS clones. Concentrations of RuBP carboxylase (RuBPC) or oxygenase (RuBPO) had no relationship with the drought tolerant nature of tea clones but their ratio correlated with the same. DT tea clones had higher catalase activity that could scavenge the hydrogen peroxide formed in the photorespiratory pathway and thereby reduced photorespiration rate (PR). The ratio of RuBPC/RuBPO had a positive correlation with PN and catalase activity. Negative correlation between RuBPC/RuBPO and PR and between catalase activity and RuBPO activity was established. and P. R. Jeyaramraja ... [et al.].