„Proteinase-activated“ receptor-2 (PAR-2) is a G protein-coupled transmembrane receptor with seven transmembrane domains activated by trypsin. It has been shown in the pancreatic tissue that PAR-2 is involved in duct/acinary cells secretion, arterial tonus regulation and capillary liquid content turnover under physiological conditions. These above mentioned structures play an important role during the development of acute pancreatitis and are profoundly influenced by a high concentration of trypsin enzyme after its secretion into the interstitial tissue from the basolateral aspect of acinar cells. Among the other factors, it is the increase of interstitial trypsin concentration followed rapidly by PAR-2 action on pancreatic vascular smooth muscle cells that initiates ischemic changes in pancreatic parenchyma and that finally leads to necrosis of the pancreas. Consequent reperfusion perpetuates changes leading to the acute pancreatitis development. On the contrary, PAR-2 action on both exocrine and duct structures seems to play locally a protective role during acute pancreatitis development. Moreover, PAR-2 action is not confined to the pancreas but it contributes to the systemic vascular endothelium and immune cell activation that triggers the systemic inflammatory response syndrome (SIRS) contributing to an early high mortality rate in severe disease.
Microcirculatory disturbances are important early pathophysiological events in various organs during acute pancreatitis (AP). The aim of the study was to investigate an influence of L-arginine (nitric oxide substrate) and NG-nitro-L-arginine (L-NNA, nitric oxide synthase inhibitor) on organ microcirculation in experimental acute pancreatitis induced by four consecutive intraperitoneal cerulein injections (15 μg/kg/h). The microcirculation of pancreas, liver, kidney, stomach, colon and skeletal muscle was measured by laser Doppler flowmeter. Serum interleukin 6 and hematocrit levels were analyzed. AP resulted in a significant drop of microperfusion in all examined organ. L-arginine administration
(2x100 mg/kg) improved the microcirculation in the pancreas, liver, kidney, colon and skeletal muscle, and lowered hematocrit levels. L-NNA treatment (2x25 mg/kg) caused aggravation of edematous AP to the necrotizing situation, and increased IL-6 and hematocrit levels. A further reduction of blood perfusion was noted in the stomach only. It is concluded that L-arginine administration has a positive influence on organ microcirculatory disturbances accompanying experimental cerulein-induced AP. NO inhibition aggravates the course of pancreatitis.