This study investigates the effects of antinerve growth factor (anti-NGF) application on isolated ileal contractility in the rat. For this purpose, rats were divided into four groups. The control animals (n=8) received only intraperitoneal injection of an isotonic NaCl solution (i.p). Anti-NGF was daily administered intraperitoneally at the dose of 1 ng/g level in the first experimental group (n=8), and at doses of 10 ng/g (n=7) and 40 ng/g (n=7) in the second and third experimental groups, respectively. Seven days after the injections rats were sacrificed and ileum segments were isolated. Responses to acetylcholine (ACh) were evaluated by using standard Tyrode, double-calcium Tyrode and
calcium-free Tyrode solutions. The average peak amplitude of ACh-induced contractions recorded in standard Tyrode solution was significantly decreased in all three experimental groups as compared to the control group (p<0.05). When double-calcium Tyrode solution was used as the perfusion medium, the responses to ACh were also lower in all anti-NGF applied groups as compared to its control group (p<0.05). Our results showed that the application of anti-NGF reduced the contractile responses of the rat isolated ileum apparently by decreasing the calcium influx from the extracellular medium.
The authors examined the influence of acetylcholinesterase inhibitor (neostigmine) on the in vitro reactivity of urinary bladder smooth muscle (UBSM) in guinea pigs. The aim of the present study was to determine the participation of pharmacokinetic properties of acetylcholine and carbachol in different UBSM reactivity to these mediators. In vitro method of organ baths was used and reactivity of UBSM strips to cumulative doses of acetylcholine and carbachol was tested before and after the incubation with neostigmine (10-4 mol.l-1). Neostigmine caused a significant increase of UBSM reactivity to acetylcholine. The UBSM reactivity to acetylcholine was significantly higher at concentrations of 10-5 and 10-4 mol.l-1 compared to carbachol at the same concentrations. These findings indicate that in addition to different mediator affinity to muscarinic receptors and to their different intrinsic activity, the pharmacokinetic properties of acetylcholine and carbachol also participate in UBSM reactivity.
At 20oC, both quantal and non-quantal spontaneous acetylcholine release (expressed as miniature endplate potential frequency [f-MEPPs] and the H-effect, respectively) increased during the first 30 min of hypoxia in solution with normal extracellular calcium ([Ca2+]o = 2.0 mM). The hypoxia-induced tenfold increase of the f-MEPPs was virtually
absent in low calcium solution ([Ca2+]o = 0.4 mM) whereas there was still a significant increment of non-quantal release. This indicates that each of these two processes of acetylcholine release is influenced by mechanisms with different oxygen sensitivity. The rise of f-MEPPs during the onset of hypoxia apparently requires Ca2+ entry into the nerve terminal, whereas the non-quantal release can be increased by another factors such as a lower level of ATP.
The impact on blood pressure of two vasodilating mechanisms, underlied by vascular smooth muscle hyperpolarization, was studied and compared to that induced by nitric oxide (NO) mechanism. Systemic blood pressure, after inhibitory intervention in arachidonic acid metabolism (cytochrome P-450 inhibition by miconazole 0.5 mg/100 g b.w.), one of the hyperpolarizing pathways, did not change. After the inhibition of the action voltage-dependent K+ channels operator (by 4-aminopyridine 0.1 mg/100 g b.w.)
, the other hyperpolarizing pathway, blood pressure declined slightly (from 132.3±3.2 mm Hg to 116.5±5.0 mm Hg, P<0.05). Inhibition of nitric oxide production (L-NAME 5 mg/100 g b.w.) increased blood pressure considerably (123.5±2.7 mm Hg to 155.4±3.1 mm Hg, P<0.001). After inhibition of the hyperpolarizing pathway by miconazole, hypotension induced by acetylcholine (Ach, 10 μg) represented 63.0±1.9 mm Hg vs control value 78.6±5.2 mm Hg (P<0.001), by bradykinin (BK) (100 μg) 59.4±3.9 mm Hg vs control value 71.2±6.1 mm Hg (P<0.05). After inhibition of the hyperpolarizing pathway by 4-aminopyridine, hypotension induced by ACh (10 μg) achieved 64.6±2.5 mm Hg vs control value 78.4±2.8 mm Hg (P<0.001) and that induced by BK (100 μg)
56.6±5.3 mm Hg vs control value 72.3±2.5 mm Hg (P<0.001). ACh or BK hypotension after the inhibition of the above hyperpolarizing pathways was significantly attenuated. On the contrary, after NO-synthase inhibition the hypotension to ACh was significantly enhanced. Blood pressure decrease after ACh (10 μg) hypotension was 91.8±4.1 mm Hg vs control value 79.3±3.3 mm Hg (P<0.01), and after BK (100 μg) it was 78.4±7.1 mm Hg vs control value 68.3±5.2 mm Hg. A different basal BP response, but equally attenuated hypotension to Ach and BK, was detected after the inhibition of two selected hyperpolarizing pathways. In cotrast, the inhibition of NO production elicited an increase in systemic BP and augmentation of ACh and BK hypotension. The effectiveness of further hyperpolarizing mechanisms in relation to systemic BP regulation and nitric oxide level remains open.