Based on the biological significance of the ubiquitin-proteasome pathway (UPP) and its potential role during sepsis, burns and ischemia-reperfusion injury, we hypothesized that the systemic response to traumatic shock (TS) is accompanied by tissue-specific UPP alterations. Therefore, we studied tissue ubiquitin pools, chymotryptic- and tryptic-like proteasome peptidase activities and ubiquitin-protein ligation (UbPL) rates in skeletal muscle, heart, lung, liver, spleen and kidney using a clinically relevant porcine model (bilateral femur fracture/hemorrhage followed by fluid resuscitation). TS induced a systemic reduction of tissue- specific high molecular mass ubiquitin-protein conjugates (>50 kDa). Free ubiquitin was unaffected. The dynamic organ patterns of ubiquitin pools paralleled the typical physiological response to TS and resuscitation. Reduction of ubiquitin-protein conjugates was most pronounced in heart and lung (p<0.05 vs. control) and accompanied by significant increases in proteasome peptidase and UbPL activities in these organs. Unlike all other tissues, spleen proteasome peptidase and UbPL activities were significantly reduced 10 h after TS. These findings support the concept that the UPP could play an important role in regulation of cell functions during the early whole-body response to TS. The UPP might be a therapeutic target to improve the metabolic care after TS, particularly in the heart, lung, and spleen., M. B. Patel, S. A. Earle, M. Majetschak., and Obsahuje bibliografii a bibliografické odkazy
Gastric or intestinal luminal tonometry is a method for monitoring critically ill patients. It offers an index of the adequacy of aerobic metabolism in a tissue that is particularly sensitive to alterations in its perfusion and oxygenation: the gut mucosa. It is based on the measuring the increase in tissue CO2 production that accompanies anaerobic metabolism. The method simply consists of a balloon in the stomach, which measures intramucosal pCO2. From this measurement and from the arterial bicarbonate concentration gastric intramucosal pH (pHi) can be calculated, assuming that bicarbonate concentration in the gastric mucosal tissue is in equilibrium with systemic arterial bicarbonate. Despite possible clinical benefit from the measurement and the therapy of low pHi values in critically ill patients, the theoretical, experimental and pathophysiological implications for the monitoring of intramucosal acidosis in the gut are not yet fully understood. There are still some open methodological questions crucial for further clinical interpretation., V. Černý, K. Cvachovec., and Obsahuje bibliografii
Early recognition of collapsing hemodynamics in pulmonary embolism is necessary to avoid cardiac arrest using aggressive medical therapy or mechanical cardiac support. The aim of the study was to identify the maximal acute hemodynamic compensatory steady state. Overall, 40 dynamic obstructions of pulmonary artery were performe d and hemodynamic data were collected. Occlusion of only left or right pulmonary artery did not lead to the hemodynamic collapse. When gradually obstructing the bifurcation, the right ventri cle end-diastolic area expanded proportionally to pulmonary artery mean pressure from 11.6 (10.1, 14.1) to 17.8 (16.1, 18.8) cm 2 (p<0.0001) and pulmonary artery mean pressure increased from 22 (20, 24) to 44 (41, 47) mmHg (p<0.0001) at the poin t of maximal hemodynamic compensatory steady state. Sim ilarly, mean arte rial pressure decreased from 96 (87, 101) to 60 (53, 78) mmHg (p<0.0001), central venous pressure increased from 4 (4, 5) to 7 (6, 8) mmHg (p<0.0001), heart rate increased from 92 (88, 97) to 147 (122, 165) /min (p<0.0001), contin uous cardiac output dropped from 5.2 (4.7, 5.8) to 4.3 (3.7, 5.0) l/min (p=0.0023), modified shock index increased from 0.99 (0.81, 1.10) to 2.31 (1.99, 2.72), p<0.0001. In conclusion, in stead of continuous cardiac output all of the analyzed parameters can sensitively determine the individual maximal compensatory response to obstructive shock. We assume their monitoring can be used to predict the critical phase of the hemodynamic status in routine practice., J. Kudlička ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
A higher mean arterial pressure (MAP) achieved by norepinephrine up-titration may improve organ blood flow in critically ill, whereas norepinephrine-induced afterload rise might worsen myocardial function. Our aim was to assess the effects of norepinephrine dose titration on global hemodynamics in cardiogenic shock. We prospectively evaluated 12 mechanically ventilated euvolemic patients (aged 67±12 years) in cardiogenic shock (10 patients acute myocardial infarction, 1 patient dilated cardiomyopathy, 1 patient decompensated aortic stenosis). Hemodynamic monitoring included arterial and Swan-Ganz catheters. The first data were obtained at MAP of 65 mm Hg, then the norepinephrine dose was increased over 40 min to achieve MAP of 85 mm Hg. Finally, the norepinephrine-dose was tapered over 40 min to achieve MAP of 65 mm Hg. Norepinephrine up-titration increased MAP to the predefined values in all patients with concomitant mild increase in filling pressures and heart rate. Systemic vascular resistance increased, whereas cardiac output remained unchanged. During norepinephrine down-titration, all hemodynamic parameters returned to baseline values. We observed no changes in lactate levels and mixed venous oxygen saturation. Our data suggest that short-term norepinephrine dose up-titration in cardiogenic shock patients treated or pretreated with inotropes was tolerated well by the diseased heart., R. Rokyta, Jr ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy