Thanks to the development of fiber optic technologies for the Internet, large cities and metropolitan networks are now well connected through the fiber optic technology. Since the mid-nineties of the last century a rapid research in the transmission of stable frequencies via optical fibers has been introduced. It is necessary for mutual remote comparison of optical frequency standards via optical fibers. But in order to transmitting optical frequencies through photonic data networks, the key task is to compensate the Doppler shift that is induced in the fibers by external influences, such as particularly changes in the temperature or acoustic noise and mechanical vibration environment in which the fibers are installed. In this work we present some techniques to compensate these unwanted effects. Furthermore, we present the realization of an optical system and measurement parameters achieved by the phase-coherent optical transmission of the optical frequency standard working at a wavelength of 1540.5 nm. The optical frequency dissemination with the stable transport delay has been established on the fiber optic link leading from the Institute of Scientific Instruments ASCR Brno to headquarters of national provider CESNET in Prague over the optical fiber with the length of 306 km. The work includes the verification and measurement of changes of the transport delays using simultaneous bidirectional transmission of 1PPS signals from the instrument based atomic clocks placed in both ends of the same optical fiber. and Díky rozvoji komunikačních technologií pro internet jsou nyní dobře propojena velká města i metropolitní sítě optickými vlákny, čímž lze zajistit čistě fotonický přenos signálů na vzdálenosti až stovek kilometrů. Od poloviny devadesátých let minulého století probíhá intenzivní výzkum v oblasti přenosu stabilních frekvencí pomocí optických vláken, který je nezbytný pro vzájemná dálková porovnávání normálů optické frekvence. Aby však bylo možné přenášet optické frekvence přes běžné fotonické datové sítě, je nezbytné kompenzovat dopplerovský posuv, který je ve vláknech indukován působením vnějších vlivů, jako jsou zejména změny teploty či akustické a mechanické vibrace prostředí, ve kterém jsou vlákna uložena. V práci představujeme vybrané techniky kompenzace těchto nežádoucích efektů. Dále prezentujeme vlastní realizaci optické soustavy a měření dosažených parametrů fázově koherentního přenosu optické frekvence normálového laseru pracujícího na vlnové délce 1540,5 nm z pracoviště Ústavu přístrojové techniky AV ČR v Brně do ústředí poskytovatele fotonických služeb CESNET v Praze po optickém vlákně délky 306 km. Součástí výsledků je i verifikace měření změn dopravního zpoždění pomocí obousměrného simultánního přenosu signálů 1PPS z přístrojových atomových hodin umístěných v obou lokalitách po stejném optickém vlákně.
Lasers found their way into many applications. One of them is utilisation of lasersin material research. This paper isfocused on laser method of thin layers preparation and on hybrid laser technologies combining laser with magnetron, with radiofrequency discharge, and ion bombardment of layers. Hybrid systemssignificantly widen the field of laser deposition a quality of prepared coatings. Basic principles and applications in optoelectronics and v biomedicine are discussed. and Lasery jsou aplikovány v řadě činností, jednou ze zajímavých oblastí je použití laserů v materiálovém výzkumu. Článek pojednává o laserové metodě přípravy tenkých vrstev a o hybridních laserových technologiích kombinujících laser s magnetronem, sradiofrekvenčními výboji a siontovým bombardováním vrstev. Hybridní systémy značně rozšiřují oblasti laserových depozic a možnosti zvýšení kvality vytvářených pokrytí. Jsou vysvětleny principy a vyzdviženy některé aplikace v optoelektronice a v biomedicíně.
Physical research, which in 1960 enabled the first laser to be constructed and to generate the first laser beam, put light possesing unique feature into the human hands. It was coherent light, which opened entirely new possibilities, even never contemplated before for both, the research and everyday life. The paper is to explain in a simply way what is the unique of laser light based on and how it can be obtained. Besides, a short overwiev of practical usage of lasers today is mentioned. There is such a variability of laser utilization that the 21st century is sometimes said to be the photon century, like the the 20th one used to be called the electron century. Key words: laser, light emission, light absorption, coherence, optical technologies. and Fyzikálny výskum, ktorý umožnil v roku 1960 konštrukciu prvého lasera a generáciu prvého laserového zväzku, vložil ľuďom do rúk svetlo dovtedy nevídaných vlastností, koherentné svetlo, ktoré otvorilo vo výskume, ale aj každodennom živote úplne nové možnosti využitia, predtým vôbec nemysliteľné. Cieľom príspevku je vysvetliť jednoduchou formou, v čom spočíva unikátnosť laserového svetla a ako sa dosahuje. Okrem toho je tu uvedený prehľad niektorých možností praktického využitia laserov v súčasnosti. Rozmanitosť využitia je taká široká, že mnohí hovoria o 21. storočí ako storočí fotónu, podobne, ako 20. storočie sa niekedy nazýva storočím elektrónu.
A comprehensive analysis reveals that lasers provide both superior performance and lower total cost in comparison with LEDs for life sciences instrumentation. and Je LED opravdu levnější alternativou pro biologické aplikace? Pro odhad skutečných pořizovacích nákladů porovnáváme parametry záření LED s laserovými zdroji.
This article is focused on evaluation of surface modification on monocrystalline wafer after treatment by pulsed laser radiation with the wavelength 1 064 nm both in surrounding atmosphere and under thin layer of demineralised water. Dependence of the created groove dimensions on the pulse energy was investigated and treated surface structural changes were compared. and Článek se zaměřuje na vyhodnocení povrchových změn na plátku monokrystalického křemíku po ovlivnění pulsním laserovým zářením o vlnové délce 1 064 nm jak v přirozené atmosféře, tak pod tenkou vrstvou demineralizované vody. V experimentu byla zjišťována závislost rozměrů vytvořené rýhy na energii pulsu a porovnány změny struktury ovlivněného povrchu.
The main goal of this work was to characterize the spectroscopic properties (absorption, fluorescence, and lifetime) of the samarium ion in the yttrium-aluminum-garnet matrix. The Sm:YAG crystals with various samarium concentrations (1, 3, 6.4, 10, 15 and 20 at.% Sm/Y) were produced by the edge-defined, film-fed growth technique. Absorption characteristics were investigated in the spectral range of 185 nm - 3100 nm with detailed measurements in the near-infrared range of 1058 to 1125 nm. The results indicate that the specific absorption properties of the Sm:YAG crystal could be advantageously used to an absorb of parasitic fluorescence around 1064 nm (dominant emitted wavelength of Nd:YAG laser). The dependence of lifetime on the samarium ions concentration in the YAG matrix was proven. and Hlavním cílem této práce bylo experimentálně zjistit spektroskopické vlastnosti iontu samaria v matrici ytrium-aluminium-granátu. Pomocí metody EFG byly vyrobeny krystaly s různou koncentrací samaria (1, 3, 6,4, 10, 15, 20 at.% Sm/Y). Absorpční charakteristiky byly zkoumány ve spektrálním rozsahu 185 nm - 3100 nm, s detailním měřením v oblasti vlnové délky 1064 nm. Dále byly proměřeny emisní závislosti a doba života.
Laser beam of the infrared pulsed Nd:YAG laser was used to re- melting PVD (Physical Vapour Deposition) coatings on the steel substrates. Processing parameters such as pulse energy, pulse length and frequency were optimized according surface temperature. Multimode beam diameters about some millimetres were computed and adjusted in the suitable distance from focus plane. High laser power re-melting decreases their porosity, increases adhesion to basic material. In case of high laser energy gas vapours escape from basic material and cause fissures, re-melted surfaces have to be carefully controlled. New approach to evaluation of the quality surface structure was realized by laser confocal microscopy. Direct measuring or 3D surface model is possible with resolution less than hundred nanometres, depressions along laser beam path or rises on the laser spot edges were determined. Particles and grains with dimensions about one micron in re-melting structures can be observed better then by optical microscopy. Parallel measurements of the surface roughness were realized by the contact inductive profilometer Talysurf, collected data were displayed by software tool Talymap in a plane or spatial pictures. and Jednou z mnoha aplikací pulsního Nd:YAG laseru je přetavování tenkých nitridových vrstev, nanesených metodou PVD (Physical Vapor Deposition) na ocelové substráty. Očekávaným výsledkem je snížení porosity vrstev a zvýšení adheze k základnímu materiálu. Pro optimalizaci parametrů procesu byla provedena řada experimentů s proměnnou energií, délkou a frekvencí pulsu a v různých vzdálenostech povrchu vzorku od ohniska. Se zvyšující se hustotou plošné energie laserového svazku dochází k vypařování základního materiálu a trhlinám ve vrstvách. Proto je důležitá následná analýza, která byla provedena moderními metodami: laserovou konfokální mikroskopií a snímáním povrchu na kontaktním profilometru Talysurf. Získaná data převádí počítačové programy na plošná a prostorová zobrazení v různých modifikacích - profily, kontury, fotosimulace apod.
The paper deals with the process of optical-fiber drawing and shows research results achieved at the Department of Optical Fibers, Institute of Photonics and Electronics AS CR, v.v.i. (ÚFE). It presents description of basic processes in glass materials during drawing of optical fibers from preforms as well as description of experimental devices used in the ÚFE. It shows examples of results of drawing of optical fibers doped with rare-earth elements both with circular and non-circular cross-sections intended for fiber lasers and amplifiers. It also deals with drawing of special optical fibers for fiber-optic sensors, such as sectorial s-fibers, inverted-graded index fibers, fibers form soft optical glasses, chalkogenide fibers and microstructure fibers. Continuous preparation of optical fibers coated with anatase nanoparticles is also discussed in the paper. and Článek se zabývá procesem tažení optických vláken na základě výsledků výzkumu Oddělení optických vláken Ústavu fotoniky a elektroniky AV ČR, v.v.i. (ÚFE). Je v něm uveden souhrn základních procesů ve skelných materiálech při tažení vláken z preforem i popis unikátních experimentálních zařízení v ÚFE. Dále jsou ukázány příklady výsledků tažení vláken dopovaných prvky vzácných zemin s kruhovým i nekruhovým průřezem pro vláknové lasery a zesilovače. Článek rovněž popisuje tažení speciálních vláken pro optické vláknové senzory jako jsou sektorová vlákna, vlákna s invertovaným gradientním profilem, vlákna z nízkotavitelných optických skel, vlákna chalkogenidová i vlákna mikrostrukturní. V závěru se článek zabývá kontinuálním tažením vláken pokrytých nanočásticemi anatasu pro fotokatalýzu.
The paper summarizes results of more than thirty years of research of preparation and characterization of optical fibers at the Czechoslovak Academy of Sciences (CAS) and Academy of Sciences of the Czech Republic (AS CR), namely at the Institute of Chemistry of Glass and Ceramic Materials of CAS and Institute of Radio Engineering and Electronics of CAS (AS CR), nowadays the Institute of Photonics and Electronics AS CR, v.v.i. (ÚFE). This research can be characterized by two periods. In the first period till the end of 1989 the research was focused to fibers for telecommunications. Transmission properties published in the paper show that they were fully comparable with world ones. The second period from 1990 to present has been characterized by the investigation of fibers for fiber lasers and amplifiers and fiber-optic sensors. Some original structures of optical fibers designed and prepared in ÚFE are described in the paper. and Článek shrnuje výsledky třicetiletého výzkumu přípravy a charakterizace optických vláken v ČSAV a AV ČR, jmenovitě v Ústavu chemie skelných a keramických materiálů ČSAV a Ústavu radiotechniky a elektroniky ČSAV (AV ČR), dnes Ústavu fotoniky a elektroniky (ÚFE) AV ČR, v.v.i. Tento výzkum lze rozdělit do dvou období. V prvním období do konce roku 1989 byl výzkum zaměřen na telekomunikační typy vláken. V článku jsou uvedeny přenosové vlastnosti připravených vláken ukazující plnou srovnatelnost se světem. Pro druhé období od roku 1990 do současnosti je charakteristický výzkum vláken speciálních pro vláknové lasery a zesilovače a optické vláknové senzory. V článku jsou popsány některé původní struktury speciálních optických vláken navržených a připravených v ÚFE.
The main goal of this work was to investigate the influence of the temperature of the Er:YAG active medium on laser properties in eye-safe spectral region for three various pump wavelengths. The laser crystal was placed inside the vacuum chamber of a liquid nitrogen cooled cryostat. The temperature was controlled within the 80 K - 340 K temperature range. For this temperature range the absorption and emission spectra of the Er:YAG active medium at the wavelengths from 1400 nm up to 1700 nm was measured. As coherent pump sources the laser diodes with radiation wavelength at 1452 nm and 1467 nm, and Er:glass laser at 1535 nm were applied. For these sources, Er:YAG laser resonator was identical with 90 % reflectivity of output coupler at generated wavelength 1645 nm. The output laser energy has an optimum in dependence on active medium temperature and pump wavelengths. The maximal generated laser energies were reached at 90 K, 120 K, and 220 K, for pump wavelengths 1452, 1467, and 1535 nm, respectively. and Hlavním cílem této práce bylo zjistit vliv teploty aktivního materiálu Er:YAG na vlastnosti laseru v oku-bezpečné oblasti spektra pro tři různé čerpací vlnové délky. Laserový krystal byl umístěn uvnitř vakuové komory kryostatu chlazeného kapalným dusíkem. Teplota byla řízena v rozsahu od 80 do 340 K. Pro tento rozsah teplot byla proměřena absorpční a emisní spektra aktivního materiálu Er:YAG v rozmezí od 1400 nm do 1700 nm. Jako čerpací koherentní zdroje byly použity laserové diody s vlnovou délkou záření 1452 a 1467 nm a laser Er:sklo s délkou 1535 nm. Rezonátor Er:YAG laseru byl pro tyto čerpací systémy identický s odrazivostí výstupního zrcadla 90 % pro generovanou vlnovou délku 1645 nm. Byla nalezena optimální teplota aktivního materiálu, při které laserový systém dosahoval nejvyšší výstupní energie záření pro jednotlivé čerpací systémy. Pro vlnovou délku čerpacího systému 1452 nm to byla teplota 90 K, pro délku 1467 nm 120 K a pro 1535 nm to byla teplota 220 K.