The `corpipe23-corefud1.1-231206` is a `mT5-large`-based multilingual model for coreference resolution usable in CorPipe 23 (https://github.com/ufal/crac2023-corpipe). It is released under the CC BY-NC-SA 4.0 license.
The model is language agnostic (no _corpus id_ on input), so it can be used to predict coreference in any `mT5` language (for zero-shot evaluation, see the paper). However, note that the empty nodes must be present already on input, they are not predicted (the same settings as in the CRAC23 shared task).
The `corpipe23-corefud1.2-240906` is a `mT5-large`-based multilingual model for coreference resolution usable in CorPipe 23 <https://github.com/ufal/crac2023-corpipe>. It is released under the CC BY-NC-SA 4.0 license.
The model is language agnostic (no corpus id on input), so it can be in theory used to predict coreference in any `mT5` language. However, the model expects empty nodes to be already present on input, predicted by the https://www.kaggle.com/models/ufal-mff/crac2024_zero_nodes_baseline/.
This model was present in the CorPipe 24 paper as an alternative to a single-stage approach, where the empty nodes are predicted joinly with coreference resolution (via http://hdl.handle.net/11234/1-5672), an approach circa twice as fast but of slightly worse quality.
The `corpipe24-corefud1.2-240906` is a `mT5-large`-based multilingual model for coreference resolution usable in CorPipe 24 (https://github.com/ufal/crac2024-corpipe). It is released under the CC BY-NC-SA 4.0 license.
The model is language agnostic (no corpus id on input), so it can be in theory used to predict coreference in any `mT5` language.
This model jointly predicts also the empty nodes needed for zero coreference. The paper introducing this model also presents an alternative two-stage approach first predicting empty nodes (via https://www.kaggle.com/models/ufal-mff/crac2024_zero_nodes_baseline/) and then performing coreference resolution (via http://hdl.handle.net/11234/1-5673), which is circa twice as slow but slightly better.
ESIC (Europarl Simultaneous Interpreting Corpus) is a corpus of 370 speeches (10 hours) in English, with manual transcripts, transcribed simultaneous interpreting into Czech and German, and parallel translations.
The corpus contains source English videos and audios. The interpreters' voices are not published within the corpus, but there is a tool that downloads them from the web of European Parliament, where they are publicly avaiable.
The transcripts are equipped with metadata (disfluencies, mixing voices and languages, read or spontaneous speech, etc.), punctuated, and with word-level timestamps.
The speeches in the corpus come from the European Parliament plenary sessions, from the period 2008-11. Most of the speakers are MEP, both native and non-native speakers of English. The corpus contains metadata about the speakers (name, surname, id, fraction) and about the speech (date, topic, read or spontaneous).
The current version of ESIC is v1.0. It has validation and evaluation parts.
ESIC (Europarl Simultaneous Interpreting Corpus) is a corpus of 370 speeches (10 hours) in English, with manual transcripts, transcribed simultaneous interpreting into Czech and German, and parallel translations.
The corpus contains source English videos and audios. The interpreters' voices are not published within the corpus, but there is a tool that downloads them from the web of European Parliament, where they are publicly avaiable.
The transcripts are equipped with metadata (disfluencies, mixing voices and languages, read or spontaneous speech, etc.), punctuated, and with word-level timestamps.
The speeches in the corpus come from the European Parliament plenary sessions, from the period 2008-11. Most of the speakers are MEP, both native and non-native speakers of English. The corpus contains metadata about the speakers (name, surname, id, fraction) and about the speech (date, topic, read or spontaneous).
ESIC has validation and evaluation parts.
The current version is ESIC v1.1, it extends v1.0 with manual sentence alignment of the tri-parallel texts, and with bi-parallel sentence alignment of English original transcripts and German interpreting.
GeCzLex 1.0 is an online electronic resource for translation equivalents of Czech and German discourse connectives. It contains anaphoric connectives for both languages and their possible translations documented in bilingual parallel corpora (not necessarily anaphoric). The entries have been interlinked via semantic annotation of the connectives (taken from monolingual lexicons of connectives CzeDLex and DiMLex) according to the PDTB 3 sense taxonomy and translation possibilities aquired from the Czech and German parallel data of the Intercorp project. The lexicon is the first bilingual inventory of connectives with linkage on the level of individual pairs (connective + discourse sense).
En-De translation models, exported via TensorFlow Serving, available in the Lindat translation service (https://lindat.mff.cuni.cz/services/translation/).
The models were trained using the MCSQ social surveys dataset (available at https://repo.clarino.uib.no/xmlui/bitstream/handle/11509/142/mcsq_v3.zip).
Their main use should be in-domain translation of social surveys.
Models are compatible with Tensor2tensor version 1.6.6.
For details about the model training (data, model hyper-parameters), please contact the archive maintainer.
Evaluation on MCSQ test set (BLEU):
en->de: 67.5 (train: genuine in-domain MCSQ data only)
de->en: 75.0 (train: additional in-domain backtranslated MCSQ data)
(Evaluated using multeval: https://github.com/jhclark/multeval)
NER models for NameTag 2, named entity recognition tool, for English, German, Dutch, Spanish and Czech. Model documentation including performance can be found here: https://ufal.mff.cuni.cz/nametag/2/models . These models are for NameTag 2, named entity recognition tool, which can be found here: https://ufal.mff.cuni.cz/nametag/2 .
NER models for NameTag 2, named entity recognition tool, for English, German, Dutch, Spanish and Czech. Model documentation including performance can be found here: https://ufal.mff.cuni.cz/nametag/2/models . These models are for NameTag 2, named entity recognition tool, which can be found here: https://ufal.mff.cuni.cz/nametag/2 .
This is a trained model for the supervised machine learning tool NameTag 3 (https://ufal.mff.cuni.cz/nametag/3/), trained jointly on several NE corpora: English CoNLL-2003, German CoNLL-2003, Dutch CoNLL-2002, Spanish CoNLL-2002, Ukrainian Lang-uk, and Czech CNEC 2.0, all harmonized to flat NEs with 4 labels PER, ORG, LOC, and MISC. NameTag 3 is an open-source tool for both flat and nested named entity recognition (NER). NameTag 3 identifies proper names in text and classifies them into a set of predefined categories, such as names of persons, locations, organizations, etc. The model documentation can be found at https://ufal.mff.cuni.cz/nametag/3/models#multilingual-conll.