Chloroplasts utilize photons from solar radiation to synthesize energy-rich molecules of ATPs and NADPHs, which are further used in active cellular processes. Multiprotein complexes (MPCs), including photosystems (PSII and PSI), and the cellular architecture responsible for generation of the proton motive force and the subsequent photophosphorylation, mediate the task of ATP and NADPH synthesis. Both photosystems and other multiprotein assemblies are embedded in thylakoid membranes. Advances in techniques used to study structural biology, biophysics, and comparative genomics and proteomics have enabled us to gain insights of structure, function, and localization of each individual component of the photosynthetic apparatus. An efficient coordination among MPCs is essential for normal functioning of photosynthesis, but there are various stressors that might directly or indirectly interact with photosynthetic components and processes. Cadmium is one of the toxic heavy metals that interact with photosynthetic components and damage photosystems and other MPCs in thylakoids. In plants, iron deficiency shows similar symptoms as those caused by Cd. Our article provides a general overview of chloroplast structure and a critical account of Cd-induced changes in photosystems and other MPCs in thylakoids, and suggests the possible mechanisms involved in mediating these changes. The connection between Cd-induced Fe deficiency and the elevated Cd toxicity under the Fe-deficient condition was also discussed., H. Bashir, M. I. Qureshi, M. M. Ibrahim, M. Iqbal., and Obsahuje seznam literatury
The objective of this study was to evaluate the significance of blue light (B) in the growth and photosynthetic capacity of cucumber. Gas exchange, chlorophyll (Chl) fluorescence kinetics, chloroplast ultrastructure, and leaf growth were investigated to explore the influence of three different light qualities of light emitting diodes (LEDs) on plant morphogenesis and the development of photosynthetic apparatus in cucumber (Cucumis sativus) leaves from emergence to full expansion under weak light [50 μmol(photon) m-2 s-1]. We found that B could significantly increase the leaf area (LA), shoot elongation, Chl a/b, net photosynthetic rate, and stomatal conductance (g s). In addition, the comparisons of maximal quantum yield of PSII photochemistry and the photosynthetic performance index between B-, W (white light)-, and R (red light)-grown leaves suggested that B was essential for the development of photosynthetic apparatus under weak light. B-grown leaves had the lowest Chl content under weak light, however, they had well-developed chloroplasts with the highest degree of stacked lamellae and the lowest starch accumulation. This could explain to a considerable extent the highest net photosynthetic rate per Chl unit. The results demonstrated that B optimized photosynthetic performance by improving the photosynthetic rate, increasing LA, and prolonging active photosynthesis duration under low irradiance. Therefore B is necessary to ensure healthy development of chloroplasts and highly efficient photosynthetic functions in cucumbers under a weak light environment. More importantly, our study also provided theoretical and technical support for the development of light environmental control technology., X. Y. Wang, X. M. Xu, J. Cui., and Obsahuje bibliografii
In anabiotic statě mesophyll cells of both species were filled with vacuoles, chloroplasts were round and without outer envelope and starch. During an 8-d rewatering period cell water saturation deficit continuously (from 80-85 % to 15- 20 %) declined, eliptic shape of chloroplasts was restored, their outer membrane was recovered, grana stacks grew in size and were ordered, stroma was denser, and starch grains started to be formed. The processes were more rapid in Ramonda serbica than in Haberlea rhodopensis. The course of processes was different in irradiated plants than in those kept in the dark.