The effects of different light-emitting diode (LED) lights on saffron growth and photosynthetic characteristic were explored. Physiological mechanisms were explained by chlorophyll a fluorescence transient curves (OJIP) and JIP-test parameters. A decrease in the red to blue light ratio resulted in negative effects, particularly for monochromatic blue (B) LED light; saffron seedlings showed reduced chlorophyll accumulation, inhibited leaf elongation, and decreased photosynthetic performance. In the OJIP curve, the higher positive K-band observed for B LED light indicated that oxygen-evolving complex activation significantly decreased. B LED light inhibited the electron transport between primary quinone acceptor and secondary quinone acceptor as well as the existence of reducing plastoquinone centers, and increased energy dissipation of reaction centers. Otherwise, the red to blue light ratio of 2:1 had a positive effect on saffron cultivation, resulting in the longest leaf lengths, highest chlorophyll content, and photosynthetic characteristics. This study provides theoretical guidance for saffron agricultural practices.
The colorectum (late distal colon) is innervated by the sympathetic nervous system, and many colorectal diseases are related to disorders of the sympathetic nervous system. The sympathetic regulation of colorectal ion transport is rarely reported. The present study aims to investigate the effect of norepinephrine (NE) in the normal and catecholamine-depleted condition to clarify the regulation of the sympathetic adrenergic system in ion transport in the rat colorectum. NE-induced ion transport in the rats colorectum was measured by short-circuit current (Isc) recording; the expression of β-adrenoceptors and NE transporter (NET) were quantified by real-time PCR, and western blotting. When the endogenous catecholamine was depleted by reserpine, the baseline Isc in the colorectum was increased significantly comparing to controls. NE evoked downward ∆Isc in colorectum of treated rats was 1.8-fold of controls. The expression of β 2 -adrenoceptor protein in the colorectal mucosa was greater than the control, though the mRNA level was reduced. Ho wever, NET expression was significantly lower in catecholamine-depleted rats compared to the controls. In conclusion, the sympathetic nervous system plays an important role in regulating basal ion transport in the colorectum. Disorders of sympathe tic neurotransmitters result in abnormal ion transport, β-adrenoceptor and NET are involved in the process., X. Zhang, Y. Li, X. Zhang, Z. Duan, J. Zhu., and Obsahuje bibliografii