In this study, we chose apple leaf as plant material and studied effects of GeO2 on operation of photosynthetic apparatus and antioxidant enzyme activities under strong light. When exogenous GeO2 concentration was below 5.0 mg L-1, maximum photochemical quantum yield of PSII and actual quantum yield of PSII photochemistry increased significantly compared with the control under irradiances of 800 and 1,600 μmol(photon) m-2 s-1. Photosynthetic electron transport chain capacity between QA-QB, QA-PSI acceptor, and QB-PSI acceptor showed a trend of rising up with 1.0, 2.0, and 5.0 mg(GeO2) L-1 and declining with 10.0 mg(GeO2) L-1. On the other hand, dissipated energy via both ΔpH and xanthophyll cycle decreased remarkably compared with the control when GeO2 concentration was below 5.0 mg L-1. Our results suggested that low concentrations of GeO2 could alleviate photoinhibition and 5.0 mg(GeO2) L-1 was the most effective. In addition, we found, owing to exogenous GeO2 treatment, that the main form of this element in apple leaves was organic germanium, which means chemical conversion of germanium happened. The organic germanium might be helpful to allay photoinhibition due to its function of scavenging free radicals and lowering accumulation of reactive oxygen species, which was proven by higher antioxidant enzyme activities., Z. B. Wang, Y. F. Wang, J. J. Zhao, L. Ma, Y. J. Wang, X. Zhang, Y. T. Nie, Y. P. Guo, L. X. Mei, Z. Y. Zhao., and Obsahuje bibliografii
Leaf chloroplast ultrastructure and photosynthetic properties of a natural, yellow-green leaf mutant (ygl1) of rice were characterized. Our results showed that chloroplast development was significantly delayed in the mutant leaves compared with the wild-type rice (WT). As leaves matured, more grana stacks formed concurrently with increasing leaf chlorophyll (Chl) content. Except for the lower intercellular CO2 concentration, the ygl1 plants had a higher leaf net photosynthetic rate, stomatal conductance, and transpiration rate than those of the WT plants. Under equal amounts of Chl, the excitation energy of PSI and PSII was much stronger in the mutant than that in the WT. The ygl1 plants showed higher nonphotochemical quenching and lower photochemical quenching. They also exhibited higher actual photochemical efficiency of PSII with a higher electron transport rate. Under the light of 200 μmol(photon) m-2 s-1, the ygl1 mutant showed lesser deepoxidation of violaxanthin in the xanthophyll cycle than WT, but it increased substantially under strong light conditions. In conclusion, the photosynthetic machinery of the ygl1 remained stable during leaf development. The plants were less sensitive to photoinhibition compared with WT due to the active xanthophyll cycle. The ygl1 plants were efficient in both light harvesting and conversion of solar energy., Z. M. Wu, X. Zhang, J. L. Wang, J. M. Wan., and Obsahuje bibliografii
The colorectum (late distal colon) is innervated by the sympathetic nervous system, and many colorectal diseases are related to disorders of the sympathetic nervous system. The sympathetic regulation of colorectal ion transport is rarely reported. The present study aims to investigate the effect of norepinephrine (NE) in the normal and catecholamine-depleted condition to clarify the regulation of the sympathetic adrenergic system in ion transport in the rat colorectum. NE-induced ion transport in the rats colorectum was measured by short-circuit current (Isc) recording; the expression of β-adrenoceptors and NE transporter (NET) were quantified by real-time PCR, and western blotting. When the endogenous catecholamine was depleted by reserpine, the baseline Isc in the colorectum was increased significantly comparing to controls. NE evoked downward ∆Isc in colorectum of treated rats was 1.8-fold of controls. The expression of β 2 -adrenoceptor protein in the colorectal mucosa was greater than the control, though the mRNA level was reduced. Ho wever, NET expression was significantly lower in catecholamine-depleted rats compared to the controls. In conclusion, the sympathetic nervous system plays an important role in regulating basal ion transport in the colorectum. Disorders of sympathe tic neurotransmitters result in abnormal ion transport, β-adrenoceptor and NET are involved in the process., X. Zhang, Y. Li, X. Zhang, Z. Duan, J. Zhu., and Obsahuje bibliografii