The aim of this study was to investigate the effect of high fructose intake associated with moderate increase in adiposity on rat arterial adrenergic responses and their modulation by perivascular adipose tissue (PVAT). After eight-week-lasting substitution of drinking water with 10 % fructose solution in adult normotensive Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR), their systolic blood pressure, plasma triglycerides, and relative liver weight were elevated when compared to their respective control groups. Moreover, in SHR, body weight and relative heart weight were increased after treatment with fructose. In superior mesenteric arteries, PVAT exerted inhibitory influence on adrenergic contractile
responses and this effect was markedly stronger in control WKY than in SHR. In fructose-administered WKY, arterial adrenergic contractions were substantially reduced in comparison with the control group; this was caused mainly by enhancement of anticontractile action of PVAT. The diminution of the mesenteric arterial contractions was not observed after fructose treatment in SHR. We conclude that the increase in body adiposity due to fructose overfeeding in rats might have prohypertensive effect. However, in WKY it might cause PVAT-dependent and independent reduction in arterial contractile responses to adrenergic stimuli, which could attenuate the pathological elevation in vascular tone.
Treatment with pertussis toxin (PTX) which eliminates the activity of Gi proteins effectively reduces blood pressure (BP) and vascular resistance in spontaneously hypertensive rats (SHR). In this study we have compared the functional characteristics of isolated arteries from SHR with and without PTX-treatment (10 μg/kg i.v., 48 h before the experiment). Rings of thoracic aorta, superior mesenteric artery and main pulmonary artery were studied under isometric conditions to measure the reactivity of these vessels to receptor agonists and to transmural electrical stimuli. We have found that the treatment of SHR with PTX had no effect on endothelium-dependent relaxation of thoracic aorta induced by acetylcholine. In PTX-treated SHR, the maximum contraction of mesenteric artery to exogenous noradrenaline was reduced and the dose-response curve to cumulative concentration of noradrenaline was shifted to the right. Similarly, a reduction in the magnitude of neurogenic contractions elicited by electrical stimulation of perivascular nerves was observed in the mesenteric artery from PTX-treated SHR. PTX treatment of SHR also abolished the potentiating effect of angiotensin II on neurogenic contractions of the main pulmonary artery. These results indicate that PTX treatment markedly diminishes the effectiveness of adrenergic stimuli in vasculature of SHR. This could importantly affect BP regulation in genetic hypertension., A. Zemančíková, J. Török, J. Zicha, J. Kuneš., and Obsahuje bibliografii a bibliografické odkazy
The inhibitory action of perivascular adipose tissue (PVAT) in modulation of arterial contraction has been recently recognized and contrasted with the prohypertensive effect of obesity in humans. In this study we demonstrated that PVAT might have opposing effect on sympatho-adrenergic contractions in different rat conduit arteries. In superior mesenteric artery isolated from normotensive Wistar-Kyoto rats (WKY), PVAT exhibited inhibitory influence on the contractions to exogenous noradrenaline as well as to endogenous noradrenaline released from art
erial sympathetic nerves during transmural electrical stimulation or
after application of tyramine. In contrast, the abdominal aortawith intact PVAT responded with larger contractions to transmural electrical stimulation and tyramine when compared to the aorta after removing PVAT; the
responses to noradrenalinewere similar in both. This indicates that PVAT may contain additional sources of endogenous noradrenaline which could be responsible for the main difference in the modulatory effect of PVAT on adrenergic contractions between abdominal aortas and superior mesenteric arteries. In spontaneously hypertensive rats
(SHR), the anticontractile effect of PVAT in mesenteric arteries was reduced, and the removal of PVAT completely eliminated the difference in the dose-response curves to exogenous noradrenaline between SHR and WKY. These results suggest that in mesenteric artery isolated from SHR, the impairedanticontractile influence of PVAT might significantly contribute to
its increased sensitivity to adrener
gic stimuli.