During the last two decades, genotyping of African rodents has revealed important hidden diversity within morphologically cryptic genera, such as Rhabdomys. Although the distribution of Rhabdomys is known historically, its diversity has been revealed only recently, and information about the distribution range of its constituent taxa is limited. The present study contributes to clarifying the distribution of Rhabdomys taxa, primarily in southern Africa, and identifies gaps in our knowledge, by: 1) compiling the available information on its distribution; and 2) significantly increasing the number of geo-localised and genotyped specimens (n = 2428) as well as the localities (additional 48 localities) sampled. We present updated distribution maps, including the occurrence and composition of several contact zones. A long-term monitoring of three contact zones revealed their instability, and raises questions as to the role of demography, climate, and interspecific competition on species range limits. Finally, an analysis of external morphological traits suggests that tail length may be a reliable taxonomic trait to distinguish between mesic and arid taxa of Rhabdomys. Tail length variation in Rhabdomys and other rodents has been considered to be an adaptation to climatic (thermoregulation) and/or to habitat (climbing abilities) constraints, which has still to be confirmed in Rhabdomys.
A landscape genetics approach was applied to common goby (Pomatoschistus microps) sampled from three estuaries (six sites) of the Portuguese coast. Individuals of each site were genotyped for eight microsatellite loci and levels of genetic diversity and differentiation were correlated to present-day estuarine characteristics and historical events. A general ecological state for each sampling site was obtained from a principal component analysis (PCA) applied to estuarine geomorphologic characteristics and levels of heavy metals and total polycyclic aromatic hydrocarbons contamination. Genetic diversity was higher than that previously reported for common goby in the Atlantic and Mediterranean. FST were generally very low (0.000-0.049), as well as Nei’s genetic distances (0.000-0.167), although the later were statistically significant. Estuarine geomorphology and heavy metal contamination contributed the most to estuarine ecological differentiation but no trend was detected in the relationship between these characteristics and samples’ genetic diversity. Mantel tests also revealed no significant relationships between geographic, genetic and ecological distances. Null alleles only contributed to explain significant Hardy-Weinberg departures in two of the eight loci scored, although disequilibria were detected in at least two loci per sample. Notwithstanding its exploratory character, results suggest an important role for historical factors in the timing and direction of P. microps colonization of the Portuguese estuaries. Environmental variation and P. microps ability to cope with it are also structuring factors in establishing and maintaining the patchy genetic diversity detected in the studied estuaries.