Phthalates are chemicals interfering with the function of testosterone and are suspected to play a role in the emergence of neurodevelopmental diseases. This could be due to interference with brain development for which optimal testosterone levels are essential. We investigated the effect of prenatal and early postnatal exposure to a phthalate mixture on the anogenital distance (AGD), plasma testosterone levels and social behavior in rats. Pregnant rats were exposed to a mixture of diethylhexyl, diisononyl and dibutyl phthalate, each at a dose of 4.5 mg/kg/day, from gestational day 15 to postnatal day 4. A social interaction test was performed to assess sociability in the three ontogenetic stages (weaning, puberty, adulthood). AGD was measured in adulthood to assess changes in prenatal testosterone levels. Plasma testosterone levels were measured in adults by a radioimmunoassay. The total frequency and time of socio-cohesive interactions were decreased in phthalate exposed females in weaning, puberty and adulthood. Phthalate exposed males showed a decrease in the frequency of social interactions in weaning only. Shorter anogenital distance was observed in adult males exposed to phthalates. Decreased testosterone levels were observed in the exposed group in both sexes. Our results suggest that early developmental phthalate exposure may play an important role in the hormonal and behavioral changes associated with several neurodevelopmental diseases.
The healthy development of the fetus depends on the exact course of pregnancy and delivery. Therefore, prenatal hypoxia remains between the greatest threats to the developing fetus. Our study aimed to assess the impact of prenatal hypoxia on postnatal development and behavior of the rats, whose mothers were exposed to hypoxia (10.5 % O2) during a critical period of brain development on GD20 for 12 h. This prenatal insult resulted in a delay of sensorimotor development of hypoxic pups compared to the control group. Hypoxic pups also had lowered postnatal weight which in males persisted up to adulthood. In adulthood, hypoxic males showed anxiety-like behavior in the OF, higher sucrose preference, and lower levels of grimace scale (reflecting the degree of negative emotions) in the immobilization chamber compared to the control group. Moreover, hypoxic animals showed hyperactivity in EPM and LD tests, and hypoxic females had reduced sociability compared to the control group. In conclusion, our results indicate a possible relationship between prenatal hypoxia and changes in sociability, activity, and impaired emotion regulation in ADHD, ASD, or anxiety disorders. The fact that changes in observed parameters are manifested mostly in males confirms that male sex is more sensitive to prenatal insults.