Invertebrate diversity has rapidly declined throughout Europe during the last century. Various reasons for this decrease have been proposed including human induced factors like climate change. Temperature changes alter distributions and occurrences of butterflies by determining habitat conditions at different scales. We evaluated changes in the composition of butterfly communities recorded at nine areas of fallow ground in south-western Germany in 1973, 1986, 2010 and 2012 using Pollard’s transect technique. To demonstrate the importance of climatic changes in affecting butterfly communities, we calculated the community temperature index (CTI) for each butterfly community in each year. Although they increased slightly, the CTI-values did not match the temperature trends recorded in the study region. However, the reduction in the standard deviations of the CTIs over time is reflected in the marked loss of cold- and warm-adapted species due to their inability to cope with temperature and land-use induced habitat changes. Results of our butterfly surveys indicate a marked decline in species richness and striking changes in the composition of the butterfly communities studied. This trend was most pronounced for habitat specialists, thus mirroring a depletion in trait diversity. Our results indicate that, in the course of large-scale anthropogenic changes, habitat degradation at smaller scales will continuously lead to the replacement of habitat specialists by ubiquitous species., Katharina J. Filz ... [et al.]., and Obsahuje seznam literatury
Currently it remains difficult to obtain robust microsatellite markers for Lepidoptera. In an attempt to overcome the problems associated with developing microsatellite markers for this insect order we combined (i) biotin-enrichment protocol, (ii) next generation pyrosequencing (through 454 GS-FLX Titanium technology) and (iii) the use of individuals collected from eight geographically distant European populations representing three subspecies of Euphydryas aurinia. Out of 96 stringently designed primer pairs, 12 polymorphic microsatellite loci amplified without obvious evidence of null alleles in eight individuals from different subspecies. Between five and seven of these loci showed full within population applicability and three revealed to be robust and transferable between populations and sub-species, providing a first step towards the development of a valuable and robust tool for studying conservation issues and evolution in E. aurinia populations. Nevertheless, as in most studies dealing with Lepidoptera microsatellites, null alleles were detected in most of the developed markers. Our results emphasize the need for further research in order to better understand the complex evolution and organization of Lepidopteran genomes. and Melthide Sinama, Vincent Dubut, Caroline Costedoat, André Gilles, Marius Junker, Thibaut Malausa, Jean-François Martin, Gabriel Nève, Nicolas Pech, Thomas Schmitt, Marie Zimmermann, Emese Meglécz.
The use of species distribution models (SDMs) to predict the spatial occurrence and abundance of species in relation to environmental predictors has been debated in terms of species’ ecology and biogeography. The predictive power of these models is well recognized for vertebrates, but has not yet been tested for invertebrates. In this study, we aim to assess the use of SDMs for predicting local abundances of invertebrates at a macroscale level. A maximum entropy algorithm was used to build SDMs based on occurrence records of 61 species of butterflies and bioclimatic information with a 30 arc second resolution. Predictions of habitat suitability were correlated with butterfly abundance data derived from independently conducted field surveys in order to check for a relationship between the predictions of the model and local abundances. Even though the model accurately described the current distributions of the species in the study area at a macroscale, the observed occurrences of the species (i.e. presence/absence) recorded by the field surveys differed significantly from the model’s predictions for the corresponding grid cells. Moreover, there was no correlation between observed abundance and the model’s predictions for most species of butterflies. We conclude that the spatial abundance of butterflies cannot be predicted from environmental suitability modelled at a resolution as large as in this study. Using the finest scale bioclimatic information currently available (i.e. 30 arc seconds) it is not adequate to predict species abundances as structural and ecological factors as well as climatic patterns acting at a smaller scale are key determinants of the occurrence and abundance of invertebrates. Therefore, future studies have to account for the role of the resolution in environmental predictors when assessments of spatial abundances via SDMs will be conducted., Katharina J. Filz, Thomas Schmitt, Jan O. Engler., and Obsahuje seznam literatury
Six polymorphic microsatellite loci were isolated in the endangered butterfly Lycaena helle. Five of them provided interpretable results. We detected four to 34 alleles per locus in a total of 235 samples (males and females) collected from meadows in the Ardennes-Eifel (Germany, Luxemburg and Belgium) and the Westerwald (Germany). We collected one leg for DNA-extraction as a non-lethal method. The expected heterozygosities ranged from 48.6% to 83.1%, depending on the locus analysed. These markers are currently being used in our studies of the species´ phylogeography over its western Palearctic distribution area and for the analysis of the conservation status of the fragmented populations in Central Europe.
Viticulture is one of the most intensively managed agricultural ecosystems in Europe. Therefore, the conservation problems of vineyards and the ecological benefits of increasing the amount of fallow land are addressed using butterflies as a model group. We established 43 transects, each 100 m long, in a vineyard region in the vicinity of Trier (Rhineland-Palatinate, Germany) and recorded the butterflies observed along these transects on 20 occasions from late May to early August 2003. Transects crossed vineyards, fallow land and transitional areas of land. 4041 individuals of 34 species showed the typical pattern of relative abundance with few common and many relatively rare species. Fallow land had more individuals and species and a higher Shannon species diversity index than vineyards. Community evenness and average butterfly dispersal ability were highest in the vineyards. Principal Factor Analyses and UPGMA cluster analysis distinguished between fallow land and vineyards. The difference between early meadow and late forest fallow land areas was not strong, but the former tended to have a higher diversity than the latter. Vineyards thus might act as a sink for butterflies. Therefore, a clear separation between vineyards and fallow land is best for nature conservation. As young fallow land tends to have a higher diversity than older fallow land in this study, it is likely that the conservation value of vineyards for butterflies could be increased by active management of fallow land areas.