Tools and scripts used to create the cross-lingual parsing models submitted to VarDial 2017 shared task (https://bitbucket.org/hy-crossNLP/vardial2017), as described in the linked paper. The trained UDPipe models themselves are published in a separate submission (https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1971).
For each source (SS, e.g. sl) and target (TT, e.g. hr) language,
you need to add the following into this directory:
- treebanks (Universal Dependencies v1.4):
SS-ud-train.conllu
TT-ud-predPoS-dev.conllu
- parallel data (OpenSubtitles from Opus):
OpenSubtitles2016.SS-TT.SS
OpenSubtitles2016.SS-TT.TT
!!! If they are originally called ...TT-SS... instead of ...SS-TT...,
you need to symlink them (or move, or copy) !!!
- target tagging model
TT.tagger.udpipe
All of these can be obtained from https://bitbucket.org/hy-crossNLP/vardial2017
You also need to have:
- Bash
- Perl 5
- Python 3
- word2vec (https://code.google.com/archive/p/word2vec/); we used rev 41 from 15th Sep 2014
- udpipe (https://github.com/ufal/udpipe); we used commit 3e65d69 from 3rd Jan 2017
- Treex (https://github.com/ufal/treex); we used commit d27ee8a from 21st Dec 2016
The most basic setup is the sl-hr one (train_sl-hr.sh):
- normalization of deprels
- 1:1 word-alignment of parallel data with Monolingual Greedy Aligner
- simple word-by-word translation of source treebank
- pre-training of target word embeddings
- simplification of morpho feats (use only Case)
- and finally, training and evaluating the parser
Both da+sv-no (train_ds-no.sh) and cs-sk (train_cs-sk.sh) add some cross-tagging, which seems to be useful only in
specific cases (see paper for details).
Moreover, cs-sk also adds more morpho features, selecting those that
seem to be very often shared in parallel data.
The whole pipeline takes tens of hours to run, and uses several GB of RAM, so make sure to use a powerful computer.
A simple way of browsing CoNLL format files in your terminal. Fast and text-based.
To open a CoNLL file, simply run: ./view_conll sample.conll
The output is piped through less, so you can use less commands to navigate the
file; by default the less searches for sentence beginnings, so you can use "n"
to go to next sentence and "N" to go to previous sentence. Close by "q". Trees
with a high number of non-projective edges may be difficult to read, as I have
not found a good way of displaying them intelligibly.
If you are on Windows and don't have less (but have Python), run like this: python view_conll.py sample.conll
For complete instructions, see the README file.
You need Python 2 to run the viewer.
The THEaiTRobot 1.0 tool allows the user to interactively generate scripts for individual theatre play scenes.
The tool is based on GPT-2 XL generative language model, using the model without any fine-tuning, as we found that with a prompt formatted as a part of a theatre play script, the model usually generates continuation that retains the format.
We encountered numerous problems when generating the script in this way. We managed to tackle some of the problems with various adjustments, but some of them remain to be solved in a future version.
THEaiTRobot 1.0 was used to generate the first THEaiTRE play, "AI: Když robot píše hru" ("AI: When a robot writes a play").
The THEaiTRobot 2.0 tool allows the user to interactively generate scripts for individual theatre play scenes.
The previous version of the tool (http://hdl.handle.net/11234/1-3507) was based on GPT-2 XL generative language model, using the model without any fine-tuning, as we found that with a prompt formatted as a part of a theatre play script, the model usually generates continuation that retains the format.
The current version also uses vanilla GPT-2 by default, but can also instead use a GPT-2 medium model fine-tuned on theatre play scripts (as well as film and TV series scripts). Apart from the basic "flat" generation using a theatrical starting prompt and the script model, the tool also features a second, hierarchical variant, where in the first step, a play synopsis is generated from its title using a synopsis model (GPT-2 medium fine-tuned on synopses of theatre plays, as well as film, TV series and book synopses). The synopsis is then used as input for the second stage, which uses the script model.
The choice of models to use is done by setting the MODEL variable in start_server.sh and start_syn_server.sh
THEaiTRobot 2.0 was used to generate the second THEaiTRE play, "Permeation/Prostoupení".
Universal Dependencies is a project that seeks to develop cross-linguistically consistent treebank annotation for many languages, with the goal of facilitating multilingual parser development, cross-lingual learning, and parsing research from a language typology perspective. The annotation scheme is based on (universal) Stanford dependencies (de Marneffe et al., 2006, 2008, 2014), Google universal part-of-speech tags (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets (Zeman, 2008).
Universal Dependencies is a project that seeks to develop cross-linguistically consistent treebank annotation for many languages, with the goal of facilitating multilingual parser development, cross-lingual learning, and parsing research from a language typology perspective. The annotation scheme is based on (universal) Stanford dependencies (de Marneffe et al., 2006, 2008, 2014), Google universal part-of-speech tags (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets (Zeman, 2008).
Universal Dependencies is a project that seeks to develop cross-linguistically consistent treebank annotation for many languages, with the goal of facilitating multilingual parser development, cross-lingual learning, and parsing research from a language typology perspective. The annotation scheme is based on (universal) Stanford dependencies (de Marneffe et al., 2006, 2008, 2014), Google universal part-of-speech tags (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets (Zeman, 2008).
Universal Dependencies is a project that seeks to develop cross-linguistically consistent treebank annotation for many languages, with the goal of facilitating multilingual parser development, cross-lingual learning, and parsing research from a language typology perspective. The annotation scheme is based on (universal) Stanford dependencies (de Marneffe et al., 2006, 2008, 2014), Google universal part-of-speech tags (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets (Zeman, 2008).
This release is special in that the treebanks will be used as training/development data in the CoNLL 2017 shared task (http://universaldependencies.org/conll17/). Test data are not released, except for the few treebanks that do not take part in the shared task. 64 treebanks will be in the shared task, and they correspond to the following 45 languages: Ancient Greek, Arabic, Basque, Bulgarian, Catalan, Chinese, Croatian, Czech, Danish, Dutch, English, Estonian, Finnish, French, Galician, German, Gothic, Greek, Hebrew, Hindi, Hungarian, Indonesian, Irish, Italian, Japanese, Kazakh, Korean, Latin, Latvian, Norwegian, Old Church Slavonic, Persian, Polish, Portuguese, Romanian, Russian, Slovak, Slovenian, Spanish, Swedish, Turkish, Ukrainian, Urdu, Uyghur and Vietnamese.
This release fixes a bug in http://hdl.handle.net/11234/1-1976. Changed files: ud-tools-v2.0.tgz (conllu_to_text.pl, conllu_to_conllx.pl; added text_without_spaces.pl), ud-treebanks-conll2017.tgz (fi_ftb-ud-train.txt, he-ud-train.txt, it-ud-train.txt, pt_br-ud-train.txt, es-ud-train.txt) and ud-treebanks-v2.0.tgz (fi_ftb-ud-train.txt, he-ud-train.txt, it-ud-train.txt, pt_br-ud-train.txt, es-ud-train.txt, ar_nyuad-ud-dev.txt, ar_nyuad-ud-test.txt, ar_nyuad-ud-train.txt, cop-ud-dev.txt, cop-ud-test.txt, cop-ud-train.txt, sa-ud-dev.txt, sa-ud-test.txt, sa-ud-train.txt).
Universal Dependencies is a project that seeks to develop cross-linguistically consistent treebank annotation for many languages, with the goal of facilitating multilingual parser development, cross-lingual learning, and parsing research from a language typology perspective. The annotation scheme is based on (universal) Stanford dependencies (de Marneffe et al., 2006, 2008, 2014), Google universal part-of-speech tags (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets (Zeman, 2008).
This release contains the test data used in the CoNLL 2017 shared task on parsing Universal Dependencies. Due to the shared task the test data was held hidden and not released together with the training and development data of UD 2.0. Therefore this release complements the UD 2.0 release (http://hdl.handle.net/11234/1-1983) to a full release of UD treebanks. In addition, the present release contains 18 new parallel test sets and 4 test sets in surprise languages. The present release also includes the development data already released with UD 2.0. Unlike regular UD releases, this one uses the folder-file structure that was visible to the systems participating in the shared task.