Red wine polyphenols have been reported to exert beneficial effects in preventing cardiovascular diseases but their molecular mechanisms of hemodynamic effects on functional cardiovascular and renal changes were studied much less. The review is focused on in vitro as well as in
vivo effects of red wine extract containing polyphenolic compounds
(Provinols™) on cardiovascular systems and kidney in relation to the molecular and biochemical mechanisms of these compounds. This review provides the evidence that Provinols™ is able to produce ex vivo
endothelium-dependent relaxation as a result of enhanced NO synthesis. Administration of Provinols™ partially prevents the development of hypertension during NO deficiency and accelerates the decrease of blood pressure in already established hypertension. The effects of Provinols™ include prevention and/or attenuation of myocardial fibrosis, reduction of aortic wall thickening and improvement of vascular functions. These functional and structural alterations are associated with significant augmentation of NO production, seen as the increase of NO synthase activity and eNOS protein expression. Moreover, it has been documented that Provinols™ decreased the oxidative stress within the cardiovascular system and kidney.
Flavonoids, polyphenol derivatives of plant origin, possess a broad range of pharmacological properties. A number of studies have found both pro/anti-apoptotic effects for many of these compounds. For these reasons we investigated whether ProvinolsTM, flavonoids obtained from red wine, have anti-apoptotic properties. The investigations have been carried out in rats treated with Cyclosporine A (CsA). In particular, four groups of rats have been treated for 21 days with either olive oil (control group), with CsA, with ProvinolsTM, or with CsA and ProvinolsTM simultaneously. Oxidative stress, systolic blood pressure, body weight, biochemical parameters and different markers of pro/anti-apoptotic pathway were measured. CsA produced an increase of systolic blood pressure, a decrease in body weight, serum creatinine levels, urinary total protein concentration and creatinine clearance. Moreover, CsA induced renal alterations and the translocation of Bax and cytochrome c from cytoplasm to mitochondria and vice versa. These changes activated the caspase cascade pathway, that leads to morphological and biochemical features of apoptosis. ProvinolsTM restored morphological and biochemical alterations and prevented nephrotoxicity. In conclusion, this study may augment our current understanding of the controversial pro-/anti-apoptotic properties of flavonoids and their molecular mechanisms., R. Rezzani ... [et al.]., and Obsahuje seznam literatury