A method for estimation of elastic wave velocity anisotropy based on ultrasonic sounding data during rock-sample loading was developed. The subject matter of the method is approximation of ultrasonic sounding data by triaxial velocity ellipsoid. The applicability of proposed method was verified on investigation of anisot ropic rock samples. Laboratory loading of migmatite samples was realized under various mutual orientations between acting force direction and rock foliation - perpendicular, parallel and under 45°. P-ve velocity of ultrasound waves was monitored by 8 sensors network. The velocity ellipsoid was computed and changes of sizes and waorientation its main axes during loading were analyzed for separate experiments with regard to loading level. It was found, that independently to mutual orientation between rock foliation and loading direction, the minimum velocity vector turns to perpendicular direction to final rupture plane and maximum velocity vector turns to the plane of final rupture., Matěj Petružálek, Jan Vilhelm, Tomáš Lokajíček and Vladimír Rudajev., and Obsahuje bibliografické odkazy
Volumetric studies of mica spatial distribution inside samples of Westerly and Czech granites (Mrakotin, Liberec, and Brno syenite) were performed using a neutron tomography method. A significant difference in the neutron attenuation coefficients of mica and other rock-forming minerals of the granites studied yielded a large neutron radiography contrast and, as a result, allowed us to perform a detailed analysis of three-dimension structural data based on the neutron tomography reconstruction procedure. The morphology and spatial distribution of the mica phase within studied granites were obtained. Tomography data were compared to results provided by other experimental methods commonly used in rock mechanics research such as optical and electron microscopy, as well as ultrasonic shear-wave measurements. The benefits and limitations for application of the neutron tomography method for studies of granite like rocks are discussed.