A method for estimation of elastic wave velocity anisotropy based on ultrasonic sounding data during rock-sample loading was developed. The subject matter of the method is approximation of ultrasonic sounding data by triaxial velocity ellipsoid. The applicability of proposed method was verified on investigation of anisot ropic rock samples. Laboratory loading of migmatite samples was realized under various mutual orientations between acting force direction and rock foliation - perpendicular, parallel and under 45°. P-ve velocity of ultrasound waves was monitored by 8 sensors network. The velocity ellipsoid was computed and changes of sizes and waorientation its main axes during loading were analyzed for separate experiments with regard to loading level. It was found, that independently to mutual orientation between rock foliation and loading direction, the minimum velocity vector turns to perpendicular direction to final rupture plane and maximum velocity vector turns to the plane of final rupture., Matěj Petružálek, Jan Vilhelm, Tomáš Lokajíček and Vladimír Rudajev., and Obsahuje bibliografické odkazy
P-wave velocity anisotropy of rocks is often investigated by laboratory methods. The extrapolation of the laboratory results to larger rock units requires comparison with direct field measurements. Physical properties of deep-originated rocks were performed on mantle-derived peridotite from the Ivrea zone (N orthwestern Italy). These rock s were exhumed by tectonic processes during collision orogeny up to the Earth’s surface. The direct surface seismic measurements of elastic waves velocity were realized by means of shallow seismic refraction method on the outcrop of peridotite. The measuring base was about 10 m long. Laboratory seismic anisotropy measurement was realized on rock samples from the same outcrop. The geographically oriented spherical samples with diameter 50 mm were radiated by elastic waves in 132 directions under confining stress from atmospheric level up to 200 MPa. Laboratory and field values of the anisotropy of seismic wave ve locities were compared and different scales of measurements were evaluated. The field measuremen ts used frequency about 1 kHz whereas the laboratory measur ement used 700 kHz radiation. Field measurements proved relatively high value of anisotropy P-wave propagation - 25%, while laboratory experiments only 1.5%. This difference is caused by different reason of anisotropy. Laboratory samples contain only microcraks, which represents nearly continuum with rega rd to ultrasound wave length (11 mm). Rock massif, however, contains beside mickrocraks also cracks with comparable size of applied seismic wave length (10 m)., Jan Vilhelm, Vladimír Rudajev, Roman Živor, Tomáš Lokajíček and Zdeněk Pros., and Obsahuje bibliografické odkazy
Volumetric studies of mica spatial distribution inside samples of Westerly and Czech granites (Mrakotin, Liberec, and Brno syenite) were performed using a neutron tomography method. A significant difference in the neutron attenuation coefficients of mica and other rock-forming minerals of the granites studied yielded a large neutron radiography contrast and, as a result, allowed us to perform a detailed analysis of three-dimension structural data based on the neutron tomography reconstruction procedure. The morphology and spatial distribution of the mica phase within studied granites were obtained. Tomography data were compared to results provided by other experimental methods commonly used in rock mechanics research such as optical and electron microscopy, as well as ultrasonic shear-wave measurements. The benefits and limitations for application of the neutron tomography method for studies of granite like rocks are discussed.
The research in question deals with problems of determining seismic P- and S-wave velocities for purposes of computing the elastic constants of a rock massif. This experimental study indicates various ways of measurement and its processing for different geological conditions. The experimental measurements were carried out on the surface of the studied rock massif, on the walls in workings, as well as on the surface in a quarry. The question of seismic pick-ups, geophones or piezo-electric transducers and the number of components required to identify P- and S-waves, is discussed. This is considered in connection with the choice and properties of the impact or piezo-electric seismic source. The result is a number of generalizing recommendations with respect to the measuring technique, inclusive of its use for determining the directional dependence of the elastic moduli., Roman Živor, Jan Vilhelm, Vladimír Rudajev and Tomáš Lokajíček., and Obsahuje bibliografii
Various geotechnical tasks require the knowledge of rock properties, e.g., of elastic moduli, fracture systems, inhomogeneities, etc. Seismic measurements usually provide these parameters. To describe the detailed properties of small rock volumes, it is necessary to use high-frequency signals and suitable registration systems. Seismic measurements are carried out directly on rock surfaces. Although the conditions, under which measuremen ts are carried out, seem to be simple and convenient, practical measurements themselves are often complicated. The various measuring systems, including seismic sources and seismic receivers used for different base lengths, are discussed in this paper. It was found that, for the repeatability of measurements, the fixing of the sensors with plaster plays most significant role. Repeatability of hammer blow as seismic source is adversely affected namely by signal amplitude triggering. Pencil lead breaking tests with lead 1 and 6 mm in diameter were found as suitable for testing of the hi gh-frequency measuring systems. Measuring directly on the rock massif surface is different compared to exploration seismic measurements. Due to absence of a low-velocity layer it necessary to use a special choice of mutual orientation of sources and receivers. Polarization analysis may be advantageous to identify the arrival of P and S seismic waves. It was also found that the rock massif behaves as a narrow frequency-b and pass filter. For exciting frequencies of 0.1 and 1 MHz the transmitted signal displayed the same frequency of 25 kHz at a distance of 1.1 m., Jan Vilhelm, Vladimír Rudajev, Roman Živor and Tomáš Lokajíček., and Obsahuje bibliografické odkazy
Elastická anizotropie hornin je důležitý geofyzikální parametr, který využíváme ke klasifikaci hornin při petrofyzikálních studiích, pro interpretaci seismických a karotážních měření a pro studium kůry a svrchního pláště Země., Tomáš Lokajíček, Zdeněk Pros, Karel Klíma., and Obsahuje seznam literatury