Several deleterious effects may occur when intense and exhaustive exercise (IE) is not well-planned. This study aimed to investigate the effects of a short duration IE on body chemical composition and hypothalamic-pituitary-adrenal (HPA) axis. C57Bl/6 mice were distributed into four groups (10 mice per group): control (C-4D and C-10D), 4 days (E-4D), and 10 days of IE (E-10D). IE program consisted of a daily running session at 85 % of maximum speed until the animal reached exhaustion. Body weight as well as total body water, fat and protein content were determined from animal carcasses. HPA activation was assessed by plasma corticosterone levels measured by radioimmunoassay and the weight of both the adrenal glands and thymus were measured. Plasma corticosterone levels increased by 64 % in both the E-4D and E-10D groups. The weight of the adrenal glands augmented by 74 % and 45 %, at 4 and 10 days of IE, respectively, whereas thymus weight diminished by 15 % only in the E-10D group. The total carcass fat content decreased by 20 % only at 4 days IE, whereas protein content decreased by 20 % in both E-4D and E-10D groups. A relationship between corticosterone plasma levels and loss of body protein content in both E-4D and E-10D groups was observed (R2=0.999). We concluded that IE may be related to HPA axis activation associated with remodeling of body chemical composition in C57BL/6 mice., E. F. Rosa, G. A. Alves, J. Luz, S. M. A. Silva, D. Suchecki, J. B. Pesquero, J. Aboulafia, V. L. A. Nouailhetas., and Obsahuje bibliografii
Our aim was to evaluate whether endothelial overexpressing of the bradykinin B1 receptor could be associated with altered left ventricular and myocardial performance. Echocardiography and hemodynamic were employed to assess left ventricular morphology and function in Sprague Dawley transgenic rats overexpressing the endothelial bradykinin B1 receptor (Tie2B1 rats). The myocardial inotropism was evaluated on papillary muscles contracting in vitro. In Tie2B1 animals, an enlarged left ventricular cavity and lower fractional shortening coupled with a lower rate of pressure change values indicated depressed left ventricular performance. Papillary muscle mechanics revealed that both Tie2B1 and wild-type rat groups had the same contractile capacities under basal conditions;
however, in transgenic animals, there was accentuated inotropism due to post-pause potentiation. Following treatment with the Arg9-BK agonist, Tie2B1 papillary muscles displayed a reduction in myocardial inotropism. Endothelial B1 receptor overexpression has expanded the LV cavity and worsened its function. There was an exacerbated response of papillary muscle in vitro to a prolonged resting pause, and the use of a B1 receptor agonist impairs myocardial inotropism.