In the terrestrial bromeliad, Puya floccosa, a value of carbon isotopic composition (δ13C) of -22‰ has been previously reported, suggesting the operation of weak and/or intermediate (C3-CAM) crassulacean acid metabolism (CAM). In order to characterize the operation of CAM in P. floccosa and its possible induction by drought, plants were grown in Caracas and subjected to four independent drought cycles. Additionally, since plants of this species grow in Venezuela in a large range of elevations, leaf samples were collected at elevations ranging from 725 to 2,100 m a.s.l. in the Venezuelan Andes and the Coastal Range, in order to evaluate the effect of elevation on CAM performance. Even though nocturnal acid accumulation occurred in both watered and droughted plants, mean ΔH+ was higher in droughted than watered plants [ΔH+ = 60.17.5 and 22.9 ± 5.2 μmol g-1(FM), respectively]. The majority of plants from all the natural populations sampled had low values of δ13C not differing significantly from those of C3 plants collected as standards and δ13C did not change with elevation. We conclude that P. floccosa is capable of a weak CAM activity, with a large variability among populations and drought experiments probably due to local and temporal differences in microclimatic variables and drought stress; elevation bears no influence on values of δ13C in this species. and A. Herrera ... [et al.].
We analysed plant growth, ion accumulation, leaf water relations, and gas exchange of Avicennia germinans (L.) L. subjected to a long-term, controlled salinity gradient from 0 to 55 ‰. Growth and leaf area were affected by salinity higher than 10 ‰. As salinity increased, the predawn leaf water potential (Ψw) and leaf osmotic potential (Ψs) decreased. Leaf Ψw was at least -0.32 MPa lower than the Ψw of solution. Na+ and K+ ions explained about 78 % of decrease in Ψs. K+ tissue water concentration decreased by more than 60 % in all salinity treatments as compared with those grown at 0 ‰. Inversely, Na+ concentration in tissue water increased with nutrient solution salinity. The maximum net photosynthetic rate
(PN) and stomatal conductance (gs) decreased by 68 and 82 %, respectively, as salinity increased from 0 to 55 ‰; the intercellular CO2 concentration (Ci) followed the same trend. The PN as a function of Ci showed that both the initial linear slope and upper plateau of the PN vs. Ci curve were markedly affected by high salinity (40 and 55 ‰). and N. Suárez, E. Medina.
Tropical forest disturbances lead to the establishment of secondary successional plant communities constituted by light demanding species with high relative growth rate that conduct to rapid canopy closure. Two main strategies for N nutrition are: (a) mineral N acquisition in the form of NH4 and NO3, and (b) symbiotic atmospheric N2 fixation. Given the high N requirement for maximization of leaf area and radiant energy absorption, we hypothesize that contrasting strategies of N nutrition in these environments are reflected in leaf photosynthetic characteristics. We compared the N-photosynthesis relationships and carbon balance parameters per unit leaf area as they vary with age in two species with contrasting N acquisition strategies: a N2-fixer Crotalaria anagyroides HBK (Papilionoideae), and a mineral-N user Verbesina turbacensis HBK (Asteraceae). N2 fixation capacity was associated to higher specific leaf area (SLA), higher photosynthetic capacity (Pmax) per unit leaf area and leaf mass, and higher N content per unit leaf mass. The N2-fixer species showed higher slope in the relationship Pmax-N per unit leaf mass and area when compared to the leaves of non-fixer species. Moreover, the intrinsic photosynthetic N use efficiency (Pmax/N) was higher in the N2 fixer than in leaves of the non-fixer species. Changes in N due to leaf age resulted in larger changes in CO2 flux density at the leaf level in the N2-fixer species. The higher photosynthetic capacity of the N2-fixer species was mechanistically related to higher stomatal conductance, internal CO2 concentration (ci) values closer to atmospheric CO2 concentration (ca), and lower intrinsic water use efficiency than the mineral N-user species. Despite their higher Pmax per unit leaf area, total non-structural saccharides concentration was lower in mature leaves of the N2-fixer plant as compared to the non-fixer counterpart. This might be caused by the presence of a larger root sink (symbionts) stimulating saccharides export and higher diurnal respiration rates. and A. Quilici, E. Medina.
The southernmost presence of Rhizophora mangle in the western Atlantic coast occurs in coastal wetlands between 27 and 28°S in the State of Santa Catarina, Brazil. We selected mangrove communities at the estuary of the River Tavares, Florianopolis, and the Sonho Beach, Palhosa, for measurement of photosynthetic performance and intrinsic water-use efficiency of R. mangle and coexisting individuals of Avicennia schaueriana and Laguncularia racemosa, during the spring season. We used gas-exchange techniques and isotopic signatures of C and N to estimate instantaneous water-use and carboxylation efficiency (CE), long-term water-use efficiency, and potential N limitation. Results showed that R. mangle had significantly lower photosynthetic rates but similar conductance values as the other two species resulting in lower intrinsic water use (WUEi) and CE. WUEi and CE were positively correlated in L. racemosa and A. schaueriana, but not in R. mangle. At each site, δ13C values of A. schaueriana were consistently higher than those for the other species, indicating that these species are subjected to contrasting water stress conditions. Leaf concentrations of C were lower, whilst those of N were always higher in A. schaueriana, indicating accumulation of salts and nonprotein N-compounds in leaves. Nitrogen concentrations and moderate positive δ15N values indicated that plant growth at the study sites was not inhibited by nutrient deficiency, and was not influenced by urban residual waters. Lower photosynthetic rates and values of CE of R. mangle compared to the other two species may constitute constraining factors preventing this species from establishing at higher latitudes., M. L. Gomes Soares, M. M. Pereira Tognella, E. Cuevas, E. Medina., and Obsahuje seznam literatury