Over a large range of the pressure, one cannot ignore the fact that the viscosity grows significantly (even exponentially) with increasing pressure. This paper concerns long-time and large-data existence results for a generalization of the Navier-Stokes fluid whose viscosity depends on the shear rate and the pressure. The novelty of this result stems from the fact that we allow the viscosity to be an unbounded function of pressure as it becomes infinite. In order to include a large class of viscosities and in order to explain the main idea in as simple a manner as possible, we restrict ourselves to a discussion of the spatially periodic problem.
We consider the two-dimesional spatially periodic problem for an evolutionary system describing unsteady motions of the fluid with shear-dependent viscosity under general assumptions on the form of nonlinear stress tensors that includes those with pstructure. The global-in-time existence of a weak solution is established. Some models where the nonlinear operator corresponds to the case p = 1 are covered by this analysis.