This study extends our previous work by examining the effects of alpha2 -adrenoceptors under cold stimulation involving the increase of myogenic vascular oscillations as increases of very-low-frequency and low-frequency of the blood pressure variab ility. Forty-eight adult male Sprague-Dawley rats were randomly divided into four groups: vehicle; yohimbine; hexamethonium+yohimbine; guanethidine+yohimbine. Systolic blood pressure, heart rate, power spectral analysis of spontaneous blood pressure and he art rate variability and spectral coherence at very-low-frequency (0.02 to 0.2 Hz), low-frequency (0.2 to 0.6 Hz), and high-frequency (0.6 to 3.0 Hz) regions were monitored using telemetry. Key findings are as follows: 1) Cooling-induced pressor response was attenuated by yohimbine and further attenuated by hexamethonium+yohimbine and guanethidine+yohimbine, 2) Cooling-induced tachycardia response of yohimbine was attenuated by hexame - thonium+yohimbine and guanethidine+yohimbine, 3) Different patterns of p ower spectrum reaction and coherence value compared hexamethonium+yohimbine and guanethi-dine+yohimbine to yohimbine alone under cold stimulation. The results suggest that sympathetic activation of the postsynaptic alpha2-adrenoceptors causes vasoconstriction and heightening myogenic vascular oscillations, in turn, may increase blood flow to prevent tissue damage under stressful cooling challenge., Y.-H. Lin, Y.-P. Liu, Y.-C. Lin, P.-L. Lee, C.-S. Tung., and Obsahuje bibliografii
Lowering irradiance can delay the flower stalk, i.e., spike development, in order to schedule flowering time of Phalaenopsis; however, the effect on photosynthetic performance and spiking inhibition remains poorly understood. We compared light and shade treatments of Phalaenopsis aphrodite subsp. formosana in order to determine how limiting light affects day-night changes in the photosynthetic capacity of leaves and the carbon pool of leaves and stems resulting in delayed spiking. The low irradiance treatment [20 μmol(photon) m-2 s-1] for six weeks did not affect potential functions of photosynthetic apparatus estimated by chlorophyll a fluorescence analysis, but it significantly reduced the net CO2 uptake and O2 evolution rates, carbohydrate and organic acid concentrations, and amplitudes of CAM activity in new and fully expanded leaves of Phalaenopsis and delayed the spiking compared with the control kept at 150 μmol(photon) m-2 s-1. The shortened stem contained a remarkably high sucrose concentration, accounting for more than 80% of total soluble sugars for both treatments throughout the day. Moreover, the sucrose concentration was unaffected by the lowering of irradiance. The relationship between the sucrose content and spiking seemed to be loose; the major factor(s) for spiking in Phalaenopsis remained to be ascertained as the flower stalk bud is attached to the shortened stem., Y.-C. Liu, C.-H. Liu, Y.-C. Lin, C.-H. Lu, W.-H. Chen, H.-L. Wang., and Obsahuje seznam literatury