This paper presents a hybrid probabilistic neural network (PNN) and particle swarm optimization (PSO) techniques to predict the soil liquefaction. The PSO algorithm is employed in selecting the optimal smoothing parameter of the PNN to improve the forecasting accuracy. Seven parameters such as earthquake magnitude, normalized peak horizontal acceleration at ground surface, standard penetration number, penetration resistance, relative compaction, mean grain diameter and groundwater table are selected as the evaluating indices. The predictions from the PSO-PNN model were compared with those from two models: backpropagation neural network (BPNN) model and support vector machine (SVM) model. The study concluded that the proposed PSO-PNN model can be used as a reliable approach for predicting soil liquefaction.
Broomcorn millet (Panicum miliaceum L.) is one of the important C4 crops in the semiarid regions of northern China. It is a close relative of biofuel crop switchgrass. Yet, there is no information on how these crops might respond to a climate change in China. In order to gain insight into such a response, we studied the effect of elevated CO2 concentration (EC) on broomcorn millet. The changes in leaf photosynthesis, chlorophyll fluorescence, morphological parameters, biomass and yield in response to EC [i.e., + 200 µmol(CO2) mol-1] over two years were determined at the open-top chamber (OTC) experimental facility in north China. EC increased net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, transpiration rate, instantaneous transpiration efficiency, effective quantum yield of PSII photochemistry, and photochemical quenching coefficient of fully expanded flag leaves. Maximal quantum yield of PSII photochemistry declined under EC in 2013, but was not affected in 2014. EC significantly decreased intrinsic efficiency of PSII in 2013, but increased in 2014. Leaf nonphotochemical quenching decreased under EC both in 2013 and 2014. EC significantly enhanced the aboveground biomass and yield by average of 31.4 and 25.5% in both years, respectively. The increased yield of broomcorn millet under EC occurred due to the enhanced number of grains per plant. We concluded that photosynthesis of broomcorn millets was improved through increased stomatal conductance in leaves under EC, which led to an increase in height, stem diameter, aboveground biomass, and yield. This study extends our understanding of the response of this ancient C4 crop to elevated CO2 concentration., X. Y. Hao, P. Li, H. Y. Li, Y. Z. Zong, B. Zhang, J. Z. Zhao, Y. H. Han., and Obsahuje bibliografii
We have found that short-term statin treatment plus stem cell transplantation in acutely infarcted hearts improves cardiac function because statins promote the efficacy of cellular cardiomyoplasty. Autologous Sca-1+ LinCD45- (CXCR+ ) very small embryonic-like stem cell (VSEL) mobilization in acute myocardial infarction (AMI) correlates with the preservation of cardiac function. Whether short-term atorvastatin (Ator) can enhance the mobilization or recruitment of VSELs in AMI is still unclear. We divided mice into 4 groups: 1) sham; 2) AMI; 3) AMI+resveratrol (RSV) as a positive control; and 4) AMI+Ator. There was an increase in the circulating VSEL/full population of leukocytes (FPL) ratio 48 hours after AMI, and AMI+RSV increased it further. Ator administration did not increase the VSEL/FPL ratio. The cardiac stromal cell-derived factor-1 (SDF-1) and SDF-1α levels were in agreement with the results of VSEL mobilization. One week after AMI, more Sca-1+ CXCR+ cells were recruited to the myocardium of AMI+RSV mice but not AMI+Ator mice. Short-term Ator administration failed to upregulate cardiac SDF-1 and could not enhance the recruitment of VSELs early after AMI., H. Wang ... [et al.]., and Obsahuje seznam literatury