Cellular cholesterol plays fundamental and diverse roles in many biological processes and affects the pathology of various diseases. Comprehensive and detailed understanding of the cellular functions and characteristics of cholesterol requires visualization of its subcellular distribution, which can be achieved by fluorescence microscopy. Many attempts have been made to develop fluorescent cholesterol reporters, but so far, none of them seems to be ideal for studying all aspects of cholesterol management. To meet the requirements for the right probe remains a great challenge, and progress in this field continues. The main objective of this review is to not only present the current state of the art, but also critically evaluate the applicability of individual probes and for what purpose they can be used to obtain relevant data. Hence, the data obtained with different probes might provide complementary information to build an integrated picture about the cellular cholesterol. and Corresponding author: Jarmila Králová
This review summarizes recent developments in the area of porphyrin chemistry in the direction of biological applications. Novel synthetic methodologies are reviewed for porphyrin synthesis, porphyrin analog synthesis, stable porphyrinogens - calixpyrroles, expanded porphyrins. Unique biological properties of those compounds are desribed
with focus on photodynamic therapy (PDT) and molecular recognition properties. Special attentions given to metalloporphyrins with potential to affect heme degradation and CO formation.