We aimed to compare the effects of chronic and acute administration of structurally different antihypertensives, diuretics - indapamide and hydrochlorothiazide, ACE inhibitor - captopril and indapamide+captopril combination on endothelium-dependent relaxation of femoral artery isolated from nitric oxide (NO)-deficient rats. In the chronic experiment, femoral artery was isolated from Wistar rats receiving L-NAME (40 mg/kg/day) solely or with indapamide (1 mg/kg/day), hydrochlorothiazide (10 mg/kg/day), captopril (10 mg/kg/day), and indapamide+captopril combination for seven weeks. In the acute in vitro experiment, the incubation medium with femoral artery isolated from L-NAMEhypertensive rats was supplemented with investigated antihypertensives in the same concentration 10-4 mol/l. Interestingly, chronic L-NAME treatment did not cause a reduction of vasorelaxation. Indapamide+captopril elevated relaxation above the control level and completely prevented blood pressure increase induced by L-NAME. Acute incubation with captopril only or indapamide+captopril improved relaxation of femoral artery isolated from L-NAMEhypertensive rats, while the incubation with all antihypertensives increased vasorelaxation of femoral artery isolated from control Wistar rats. In conclusion, NO might be involved in the indapamide- and hydrochlorothiazide-induced improvement of vasorelaxation, while different vasorelaxing factors (prostacyclin, EDHF) contribute to the captoprilinduced improvement of vasorelaxation. During the chronic treatment additive and synergic effects of indapamide and captopril may contribute to the prevention of hypertension and increase of vasorelaxation., M. Sládková, S. Kojšová, L. Jendeková, O. Pecháňová., and Obsahuje bibliografii
We studied the effect of thiazide-like diuretic – indapamide on fibrosis development in the left ventricle of young spontaneously hypertensive rats (SHR) and assessed the involvement of nitric oxide in this process. Six-week-old male SHR were treated with indapamide (1 mg/kg/day) for six weeks. Age-matched SHR were used as hypertensive and Wistar-Kyoto rats (WKY) as normotensive control. Systolic blood pressure was measured by tail-cuff plethysmography. Nitric oxide synthase (NOS) activity, protein expressions of endothelial (eNOS) and inducible NOS (iNOS), myocardial fibrosis and collagen type I and III were determined in the left ventricle. Indapamide treatment partially prevented SBP increase in SHR (SHR+Indapamide: 157±4, SHR: 171±3, WKY: 119±3 mmHg). Indapamide prevented myocardial fibrosis development in SHR, but without affecting collagen type I to type III ratio. Indapamide did not affect NOS activity as well as eNOS and iNOS protein expressions in the left ventricles evaluated by both Western blot and immunohistochemically. In conclusion, our results indicate that indapamide-induced prevention of myocardial fibrosis is not mediated by nitric oxide-related mechanism., P. Janega, S. Kojšová, L. Jendeková, P. Babál, O. Pecháňová., and Obsahuje bibliografii a bibliografické odkazy
The imbalance between nitric oxide (NO) and reactive oxygen species (ROS) production appears to be a common feature of experimental and human hypertension. Previously, different antioxidants and/or scavengers of oxygen free radicals were shown to activate nitric oxide synthase (NO synthase, NOS) and to increase the expression of both endothelial and neuronal NO synthase isoforms leading to blood pressure reduction. On the other hand, various antihypertensive drugs have been documented to possess antioxidant properties, which may contribute to their beneficial effect on blood pressure. This review is focused on the effects of antioxidant treatment in different models of
experimental hypertension with a special attention to the prevention of oxidative damage and the augmentation of NO synthase activity and expression of NOS isoforms.
Red wine polyphenols have been reported to possess beneficial properties for preventing cardiovascular diseases but their neuroprotective effects during chronic L-NAME treatment have not been elucidated. The aim of this study was to analyze a time course of Provinols
TM effects on brain NO synthase activity and oxidative damage in L-NAME-induced hypertension. Male Wistar rats, 12 weeks old, were divided into six groups: control groups, groups treated with N G-nitro-L-arginine methyl ester (L-NAME, 40 mg/kg/day) for 4 or 7 weeks and groups receiving ProvinolsTM (40 mg/kg/day) plus L-NAME for 4 or 7 weeks. At the end of the treatment, marker of membrane oxidative damage – conjugated dienes (CD) in the brain and NO synthase activity in the cerebral cortex, cerebellum and brainstem were determined. L-NAME treatment for 4 or 7 weeks led to the increase in blood pressure, elevation of CD concentration and decrease of NO synthase activity in the brain parts investigated. ProvinolsTM partially prevented blood pressure rise and elevation of CD concentration. Comparing to the L-NAME treated group, ProvinolsTM increased NO synthase activity after 4 weeks of treatment. However, the prolonged ProvinolsTM treatment for 7 weeks had no effect on NO synthase activity decreased by L-NAME treatment. In conclusion, ProvinolsTM partially prevents L-NAME induced hypertension via
the different mechanisms depending on the duration of treatment. Prevention of oxidative damage in the brain with modulating effect on NO synthase activity is suggested.