Geodetic geodynamic studies were conducted in the Wrocław Plain, situated in the SE part of the Central European Subsidence Zone (CESZ). The boundaries of this plain coincide with the outline of the rhomboidal Cainozoic Wrocław Basin. This area has been chosen for detailed examination taking into account the results of previous geodynamic research, pointing to constant subsidence of the Wrocław region. Analysis of drainage network and changeable thicknesses of the Neogene an d Quaternary strata also indicates weak, although stable subsidence of the central part of the Silesian Lowland and relative, small-scale uplift of the Fore-Sudetic region situated in thes outh and an area placed north of the Odra River valley. The studies consisted in measuring elevation changes of benchmarks along lines of precise levelling during 1956-1999 period, establishing a GPS network points, as well as measuring and processing of GPS data acquired during 2008-2010 time span. Displacements of benchmarks of precise levelling lines point to block-type mobility of structures located in the SE part of the CESZ, while GPS measurements indicate deformations related to bending of the Cainozoic sedimentary cover underlain by metamorphic bedrock and Permo-Mesozoic strata. Three years of observations enable us to distinguish two zones typified by compressive deformations being coincident with subsiding areas. One of these zones strikes NW-SE and marks the CESZ axis, the second one, oriented NNW-SSE, fo llows the orientation of a deeply buried Carboniferous-Permian tectonic graben (the Eastern Fore-Sudetic Basin) and a much shallower trough filled with Cretaceous strata in the Opole region. Uplift typifies the Fore-Sudetic Block as well as areas situated close to Opole town and north of the Odra River valley., Piotr Grzempowski, Janusz Badura, Stefan Cacoń, Jan Kapłon, Witold Rohm and Bogusław Przybylski., and Obsahuje bibliografické odkazy
Geological structure, including main faults and faults zones, of the Góry Stołowe National Park originated in Neogene. Displacements on faults in the Poříčí-Hronov and the Czerwona Woda fault zones have been revealed at present times. A network of 11 research points was established to register this process and phenomena associated with it. The first measurement, consisting of GPS and gravimetric observations, was performed in 2008. It has been complemented with relative measurements of the faults in selected places where crack-gauges have been installed. Accuracies of the first GPS measurements indicate ability to detect horizontal movements with accuracy of several millimetres., Stefan Cacoń, Jurand Wojewoda and Jan Kapłon., and Obsahuje bibliografii
The paper presents results of epoch satellite GPS and gravimetric measurements performed on the geodynamic network in central part of the Stołowe Mts. between 1993 and 2009. The research results show significant changes of gravity on most of the points and significant horizontal movement of one point in the central part of the area. The results confirm present day activity of the zone where faults Polický, Bělský and Czerwona Woda Fault Zone exists. In addition, they correspond with the studies of seismic activity in this part of the Sudety Mts., Stefan Cacoń, Jan Kapłon, Bernard Kontny, Josef Weigel, Otakar Švábenský and Jiři Kopecký., and Obsahuje bibliografii
This paper presents results of the research on tectonic activity of the marginal sudetic fault (MSF). Velocities of points obtained from processing GPS observations in the GEOSUD network and results of national precise leveling networks have been analysed. Results of 1996-2005 GPS measurements and results of measurements of selected points for the 2006-2007 period were taken considered. The velocities calculated by means of the Bernese GPS Software 5.0 were used to test hypothesis on present-day strike-slip movement activity of the marginal sudetic fault. The relationship between the calculated velocities and the length of projection onto the fault’s line was studied. The second part contains analysis of relative vertical velocities of benchmarks, making up the 1st and the 2nd class national precise leveling lines crossing the fault line, to study its vertical activity. Velocities of horizontal and vertical changes of points on both sides of the fault were compared with models described in literature., Jan Kapłon and Stefan Cacoń., and Obsahuje bibliografii