Mesembryanthemum crystallinum is an annual succulent plant that is being used as an emerging healthy leafy vegetable. To investigate the growth and physiological response of M. crystallinum to artificial lighting, five different light treatments were applied at 150 µmol(photon) m-2 s-1, which were white (W), different rations of red/blue (B) (15, 40, and 70%B), and blue (100%B), respectively. Our results showed that plants could gain as much as edible leaf area and dry mass with a certain ratio of blue (40%) in comparison with W. Plants grown under 100%B resulted in reduced photosynthetic rate, leaf area, and fresh mass compared with W. Adding blue fraction in the light regime enhanced the photosynthetic performance by influencing the amount of chlorophyll (Chl), Chl a/b, and specific leaf area. Under red/blue treatments, the electron transport rate and effective quantum yield of both PSII and PSI increased, while the nitrate content was reduced and flavonoids and total antioxidant capacity were unaffected.
Xerophytic stomatal traits may help plants maintain photosynthetic rates under water deficit; however, such adaptations are not well understood. A pot experiment was conducted with two winter wheat cultivars (Pubing 143, Zhengyin 1) during the grain-filling period. Net photosynthetic rate (PN) and chlorophyll (Chl) content were significantly less affected by water deficit in Pubing 143 than that in Zhengyin 1, and the variation in both PN and Chl content were more stable in spikes compared to flag leaves. At 18 days after anthesis, stomatal conductance of spikes in Pubing 143 were 28% lower than that of the control, while transpiration rate was 34% lower in Zhengyin 1 under water deficit. We provided the first evidence of amphistomatous stomata on the lemma of winter wheat spikes through scanning electron microscopic observations. The finding of the amphistomatous stomata is an important contribution to stomatal distribution and may help explain how wheat spikes can maintain high photosynthetic rates even under drought conditions., H. Ding, D. Liu, X. Liu, Y. Li, J. Kang, J. Lv, G. Wang., and Obsahuje bibliografii