The study of mining-induced behaviors of faults and strata in underground coalmines is significant to know the mechanism and prediction of some accidents (i.e., water inrush, gas flowing and outburst). Equivalent materials are applied herein in an underground project to simulate a progressive mining operation with a normal fault occurrence. The failure–movement evolution of the overlying strata and the stress–displacement evolution of the fault are studied through a physical simulation test. The formation of a mining-induced fracture and the mechanism of accidents caused by the mining-induced fracture are analyzed. The results show that the footwall strata underwent a more notable movement compared to the hanging wall strata. Hence, the mining-induced fracture height of the footwall is higher than that of the hanging wall. The effect of the fault can be observed on the mining-induced fracture evolution of the footwall, hanging wall, and fault plane. The developed patterns of the fracture channel successively present an evolution in the shape of a “saddle”, a “trapezium”, and an “M”. The causes of accidents induced by the mining fracture are also discussed.
During the extraction of coal from thick seams in deep longwall faces, both high in-situ stress and a massive main roof are common. The progressive fracturing in this massive main roof leads to an increase in the front abutment stress and changes in the strain energy of the coal seam which can lead to dynamic disasters such as rockbursts. Based on the mining conditions observed in Panel 5301 of the Xinhe Coal Mine, microseismic (MS) and borehole stress monitoring, along with numerical simulations, was used to propose an evolution law for coal mine roof fracture, front abutment stress, and strain energy. Results indicate that as the roof collapses during the progress of extraction, the transmission point for overburden load moves forward such that the peak front abutment stress advances to 20–25 m in front of the working face. The coal mass within 22–90 m in front of the working face was observed to accumulate 176.2 kJ of strain energy, with the peak strain energy increasing from 80.15 kJ to 136 kJ. The data collected and analyzed in this research provides a theoretical basis for forecasting the location of mining-induced rockburst based on observed fracturing in the main roof.