The aim of this study was to evaluate myofibrillar creatine kinase (EC 2.7.3.2) activity on the background of the effect of substrate channeling by myosin ATPase and to compare it with creatine kinase (CK) activity of whole skinned fibers. In order to assess CK activity, skinned fibers were prepared from the rat psoas major muscles defined by light microscopy. The activity in permeabilized fibers after treatment with saponin, Triton X-100 and Ca2+-free medium reached 2.80, 6.97 and 3.32 m mol ATP min-1 mg-1 protein, respectively, when a coupled enzyme assay system with external hexokinase and glucose-6-phosphate dehydrogenase was used. Transmission electron microscopy (TEM) revealed a possible interference among activities of sarcolemmal, sarcoplasmic, myofibrillar and mitochondrial CK from persisting structures. For evaluation of the myofibrillar CK itself, a pure myofibrillar fraction was prepared. Fraction purity was confirmed by TEM and by enzymatic assays for marker enzymes. Two procedures, i.e. the coupled enzyme assay and the evaluation of phosphocreatine (Pcr) concentration before and after the CK reaction, were used for measurement of CK activity in this fraction. The procedures resulted in 3.2 nmol ATP min-1 mg-1 protein and 7.6 nmol PCr min-1 mg-1 protein, respectively. These alternative approaches revealed a discrepancy between the reacting portions of Pcr by more than 50 % , which provides information about the size of the effect, generally described as substrate channeling., M. Gregor, J. Mejsnar, A. Janovská, J. Žurmanová, O. Benada, B. Mejsnarová., and Obsahuje bibliografii
Myofibril-bound creatine kinase EC 2.7.3.2 (CK), a key enzyme of muscle energy metabolism, has been selected for studies of conformational changes that underlie the cellular control of enzyme activity. For fluorescence spectroscopy measurements, the CK molecule was double-labeled with IAF (5-iodoacetamidofluorescein) and ErITC (erythrosin 5'-isothiocyanate). Measurement of fluorescence resonance energy transfer (FRET) from fluorescein to erythrosin was used to obtain information about the donor-acceptor pair distance. Frequency-domain lifetime measurements evaluate the donor-acceptor distance in the native CK molecule as 7.8 nm. The Förster radius equals 5.3 nm with the resolution range from 0.2 to 1.0 nm. Erythrosin-fluorescein labeling (EFL) was tested for artificial conformational changes of the CK molecule with high-salt concentration treatment. The transition distance, defined by His-97 and Cys-283 and derived from a 3D model equals 0.766 nm for the open (inactive) form and 0.277 nm for the closed (reactive) form of the CK molecule. In this way, the resolution range of the used spectroscopy method is significant, concerning the difference of 0.489 nm. Nevertheless, the CK enzyme activity, assessed by the hexokinase-coupled assay, was diminished down to 1 % of the activity of the native enzyme. EFL is suitable for description of conformational behavior implied from the regulation of creatine kinase. However, the observed inhibition restricts EFL to studies of conformational changes during natural catalytic activity., M. Gregor, M. Kubala, E. Amler, J. Mejsnar., and Obsahuje bibliografii
Myofibrillar creatine kinase (CK) that buffers ATP during fluctuating muscle energy metabolism has been selected for studies of conformational changes underlying the cellular control of enzyme activity. The force field was computed for three energetic states, namely for the substrate-free CK molecule, for the molecule conjugated with the MgATP complex, and for the molecule conjugated with the pair of reactants MgATP-creatine. Without its substrates, the enzyme molecule assumes an inactive "open" form. Upon binding of the MgATP complex, the CK molecule takes up a reactive "closed" conformation. Subsequent binding of creatine yields a nonreactive "intermediary" conformation. Acid-base catalysis is considered to be the basic principle for the reversible transfer of the phosphoryl group between the substrates. The results indicate that the substrate-induced energy minimizing conformational changes do not represent a sufficient condition for CK activity and that some other essential component of physiological control at the cellular level is involved in the transition from the intermediary to the closed structure of the molecule., J. A. Mejsnar, B. Sopko, M. Gergor., and Obsahuje bibliografii