Polymorphic CYP2D6 is the enzyme that activates the opioid analgesic tramadol by O-demethylation to its active metabolite O-demethyltramadol (M1). Our objective was to determine the opioid effects measured by pupillary response to tramadol of CYP2D6 genotyped volunteers in relation to the disposition of tramadol and M1 in plasma. Tramadol displayed phenotypic pharmacokinetics and it was possible to identify poor metabolizers (PM) with >99 % confidence from the metabolic ratio (MR) in a single blood sample taken between 2.5 and 24 h post-dose. Homozygous extensive metabolizers (EM) differed from PM subjects by an almost threefold greater (P=0.0014) maximal pupillary constriction (Emax). Significant correlations between the AUC and Cmax values of M1 versus pupillary constriction were found. The corresponding correlations of pharmacokinetic parameters for tramadol itself were weaker and negative. The strongest correlations were for the single-point metabolic ratios at all sampling intervals versus the effects, with rs ranging from 0.85 to 0.89 (p‹0.01). It is concluded that the concept of dual opioid/non-opioid action of the drug, though considerably stronger in EMs, is valid for both EM and PM subjects. This is the theoretical basis for the frequent use and satisfactory efficacy of tramadol in clinical practice when given to genetically non-selected population., O. Slanař, M. Nobilis, J. Květina, R. Mikoviny, T. Zima, J. R. Idle, F. Perlík., and Obsahuje biblografii a bibliografické odkazy
Electrogastrography (EGG) is a non-invasive method for the assessment of gastric myoelectrical activity. Porcine EGG is comparable with human one. The purpose of this study was to evaluate the effect of atropine and neostigmine on the EGG in experimental pigs. Adult female pigs were administrated atropine (1.5 mg i.m., n=6) and neostigmine (0.5 mg i.m., n=6) after the baseline EGG, followed by a 90-min trial recording (MMS, Enschede, the Netherlands). Running spectral analysis was used for the evaluation. The results were expressed as dominant frequency of slow waves and EGG power (areas of amplitudes). Neostigmine increased continuously the dominant frequency and decreased significantly the EGG power. Atropine did not change the dominant frequency significantly. However, atropine increased significantly the EGG power (areas of amplitudes) from basal values to the maximum at the 10-20-min interval. After that period, the areas of amplitudes decreased significantly to the lowest values at the 60-90-min interval. In conclusion, cholinergic and anticholinergic agents affect differently EGG in experimental pigs., J. Květina, I. Tachecí, M. Pavlík, M. Kopáčová, S. Rejchrt, T. Douda, M. Kuneš, J. Bureš., and Obsahuje bibliografii