The present work investigates the effect of the flow profile induced by an inlet condition on the roll-wave evolution in turbulent clear-water flows. The study employs theoretical and numerical analyses. Firstly, the influence of the inlet condition on the spatial evolution of a single perturbation in a hypercritical flow is examined through the expansion near a wavefront analysis. The results show that an accelerated unperturbed profile reduces the disturbance spatial growth. A decelerated profile causes an increase. The effect of the flow profile on the spatial evolution of rollwave trains is then numerically investigated solving the Saint Venant equations with a second-order Runge-Kutta Total Variation Diminishing (TVD) Finite Volume scheme. The numerical simulations comply with the analytical results for the initial and transition phases of the roll-wave development. The unperturbed profile influences even the roll-waves statistical characteristics in the final stage, with a more evident effect in case of accelerated profiles. The influence of the flow profile should be therefore accounted for in the formulation of predictive criteria for roll-waves appearance based on the estimation of the disturbance spatial growth rate.
The paper addresses the prediction of roll-waves occurrence in mud-flows. The spatial growth of a point-wise disturbance is analytically described, based on the linearized flow model of a Herschel and Bulkley fluid, in the neighborhood of an initial uniform base condition. The theoretical achievements allow to generalize to mud-flows the minimum channel criterion commonly used for the prediction of roll-waves in clear-water. The applicability of the criterion is discussed through the comparison with literature laboratory data concerning unstable flows without rollwaves.