In order to assess its response to the herbicide, sethoxydim (SEY), seedlings of two foxtail millet (Setaria italica) hybrids were exposed to 0.75, 1.5, 3, and 6 L(SEY active ingredient, ai) ha-1 for 7 and 15 d. Our results showed that SEY reduced photosynthesis and oxidative stress in the hybrid millet (Zhangza) at the dosage below 1.5 L(ai) ha-1 (i.e., recommended dosage), whereas it caused death of Jingu 21 at all treatment dosages. In addition, we further explored the effect of SEY on PSI and PSII; the hybrid millet showed a greater tolerance to SEY and also the ability to recover. In conclusion, the hybrid millet seems to possess certain photosynthetic protection mechanisms which could reduce or eliminate the herbicide stress by increasing nonphotochemical quenching for dissipating excessive light energy under SEY-induced oxidative stress., M. J. Guo, Y. G. Wang, S. Q. Dong, Y. Y. Wen, X. E. Song, P. Y. Guo., and Obsahuje bibliografii
Two foxtail millet (Setaria italica L.) varieties were subjected to different shading intensity treatments during a grain-filling stage in a field experiment in order to clarify physiological mechanisms of low-light effects on the yield. Our results showed that the grain fresh mass per panicle, yield, photosynthetic pigment contents, net photosynthetic rate, stomatal conductance, effective quantum yield of PSII photochemistry, and electron transport rate decreased with the increase of shading intensity, whereas the intercellular CO2 concentration increased in both varieties. In addition, shading changed a double-peak diurnal variation of photosynthesis to a one-peak curve. In conclusion, the lower yield of foxtail millet was caused mainly by a reduction of grain mass assimilated, a decline in chlorophyll content, and the low photosynthetic rate due to low light during the grain-filling stage. Reduced light energy absorption and conversion, restricted electron transfer, and reduced stomatal conductance might cause the decrease in photosynthesis., X. Y. Yuan, L. G. Zhang, L. Huang, X. Qi, Y. Y. Wen, S. Q. Dong, X. E. Song, H. F. Wang, P. Y. Guo., and Obsahuje bibliografii
We studied the effect of herbicide and nitrogen supply on photosynthesis in Perilla frutescens L. Britt. Plants were exposed to combined treatment of urea and herbicide, fenoxaprop-P-ethyl (FPE), in various concentrations. FPE reduced significantly chlorophyll (Chl) content, photosynthetic rate, and stomatal conductance, but increased significantly intercellular CO2 concentration; thus, FPE inhibited significantly the photosynthetic capacity. In addition, FPE also decreased significantly the PSII photochemical efficiency, effective quantum yield of photochemical energy conversion in PSII, PSII potential activity, and photochemical quenching of variable Chl fluorescence. It also decreased nonphotochemical quenching. It indicated that FPE impaired PSII and blocked the electron transport in light reaction. The urea treatment at moderate concentration (1-4 g L-1) could antagonize the negative effect of FPE, while the high urea concentration (8 g L-1) aggravated this effect. The treatment with urea (4 g L-1) and then with FPE (1.33 mL L-1) enhanced Chl content index, photosynthetic rate, and stomatal conductance by 12.5, 36.1, and 28.5% compared to FPE treatment alone. Thus, we suggested to treat plants first with urea (4 g L-1) and then by FPE (1.33 mL L-1) as the best and the safest method to balance the fertilization and weeding., J. H. Zhang, S. J. Guo, P. Y. Guo, X. Wang., and Obsahuje bibliografii