Specific neuronal populations are known to express calcium binding proteins (CBP) such as calbindin (CB), parvalbumin (PV) and calretinin (CR). These CBP can act as calcium buffers that modify spatiotemporal characteristics of intracellular calcium transients and affect calcium homeostasis in neurons. It was recently shown that changes in neuronal CBP expression can have significant modulatory effect on synaptic transmission. Spinothalamic tract (STT) neurons form a major nociceptive pathway and they become sensitized after peripheral inflammation. In our experiments, expression of CBP in STT neurons was studied in a model of unilateral acute knee joint arthritis in rats. Altogether 377, 374 and 358 STT neurons in the segments L3-4 were evaluated for the presence of CB, PV and CR. On the contralateral (control) side 11 %, 9 % and 47 % of the retrogradely labeled STT ne urons expressed CB, PV and CR, respectively. On the ipsilateral (arthritic) side there was significantly more CB (23 %) and PV (25 %) expressing STT neurons, while the number of CR positive neurons (50 %) did not differ. Our results show increased expression of fast (CB) and slow (PV) calcium binding proteins in STT neurons after induction of experimental arthritis. This suggests that change in CBP expression could have a significant effect on calcium homeostasis and possibly modulation of synaptic activity in STT neurons., D. Sojka, G. Zacharova, D. Spicarova, J. Palecek., and Obsahuje bibliografii
Parvalbumin (PV) is a calcium-binding protein that is expressed by numerous neuronal subpopulations in the central nervous system. Staining for PV was often used in neuroanatomical studies in the past. Recently, several studies have suggested that PV acts in neurons as a mobile endogenous calcium buffer that affects temporo-spatial characteristics of ca lcium transients and is involved in modulation of synaptic transmission. In our experiments, expression of PV in the lumbar dorsal horn spinal cord was evaluated using densitometric analysis of immunohistological sections and Western-blot techniques in control and arthritic rats. There wa s a significant reduction of PV immunoreactivity in the superficial dorsal horn region ipsilateral to the arthritis after induction of the peripheral inflammation. The ipsilateral area and intensity of PV staining in this area were reduced to 38 % and 37 %, respectively, out of the total PV staining on both sides. It is suggested that this reduction may reflect decreased expression of PV in GABAergic inhibitory neurons. Reduction of PV concentration in the presynaptic GABAergic terminals could lead to potentiation of inhibitory transmission in the spinal cord. Our results suggest that changes in expression of calcium-binding proteins in spinal cord dorsal horn neurons may modulate nociceptive transmission., G. Zachařová, D. Sojka, J. Paleček., and Obsahuje bibliografii