The development of the cauda equina syndrome in the dog and the involvement of spinal nitric oxide synthase immunoreactivity (NOS-IR) and catalytic nitric oxide synthase (cNOS) activity were studied in a pain model caused by multiple cauda equina constrictions. Increased NOS-IR was found two days post-constriction in neurons of the deep dorsal horn and in large, mostly bipolar neurons located in the internal basal nucleus of Cajal seen along the medial border of the dorsal horn. Concomitantly, NOS-IR was detected in small neurons close to the medioventral border of the ventral horn. High NOS-IR appeared in a dense sacral vascular body close to the Lissauer tract in S1-S3 segments. Somatic and fiber-like NOS-IR appeared at five days post-constriction in the Lissauer tract and in the lateral and medial collateral pathways arising from the Lissauer tract. Both pathways were accompanied by a dense punctate NOS immunopositive staining. Simultaneously, the internal basal nucleus of Cajal and neuropil of this nucleus exhibited high NOS-IR. A significant decrease in the number of small NOS immunoreactive somata was noted in laminae I-II of L6-S2 segments at five days post-constriction while, at the same time, the number of NOS immunoreactive neurons located in laminae VIII and IX was significantly increased. Moreover, high immunopositivity in the sacral vascular body persisted along with a highly expressed NOS-IR staining of vessels supplying the dorsal sacral gray commissure and dorsal horn in S1-S3 segments. cNOS activity, based on a radioassay of compartmentalized gray and white matter regions of lower lumbar segments and non-compartmentalized gray and white matter of S1-S3 segments, proved to be highly variable for both post-constriction periods., J. Maršala, J. Kafka, N. Lukáčová, D. Čížková, M. Maršala, N. Katsube., and Obsahuje bibliografii
The aim of the present study was to investigate whether enzyme chondroitinase ABC (ChABC) treatment influences the phenotype of neural progenitor cells (NPCs) derived from injured rat spinal cord. Adult as well as fetal spinal cords contain a pool of endogenous neural progenitors cells, which play a key role in the neuroregenerative processes follow ing spinal cord injury (SCI) and hold particular promise for therapeutic approaches in CNS injury or neurodegenerative diso rders. In our study we used in vitro model to demonstrate the differentiation potential of NPCs isolated from adult rat spinal cord after SCI, treated with ChABC. The intrathecal delivery of ChABC (10 U/ml) was performed at day 1 and 2 after SCI. The present findings indicate that the impact of SCI resulted in a decrease of all NPCs phenotypes and the ChABC treatment, on the contra ry, caused an opposite effect., L. Slovinská, I. Novotná, D. Čížková., and Obsahuje bibliografii a bibliografické odkazy