Seedlings from four provenances of Jatropha curcas were subjected to 80, 50, and 30% of soil field capacity in potted experiments in order to study their responses to water availability. Our results showed that with the decline of soil water availability, plant growth, biomass accumulation, net photosynthetic rate, stomatal conductance (gs), and transpiration rate (E) decreased, whereas leaf carbon isotope composition (δ13C), leaf pigment contents, and stomatal limitation value increased, while maximal quantum yield of PSII photochemistry was not affected. Our findings proved that stomatal limitation to photosynthesis dominated in J. curcas under low water availability. The increase of δ13C should be attributed to the decrease in gs and E under the lowest water supply. J. curcas could adapt to low water availability by adjusting its plant size, stomata closure, reduction of E, increasing δ13C, and leaf pigment contents. Moreover, effects of provenance and the interaction with the watering regime were detected in growth and many physiological parameters. The provenance from xeric habitats showed stronger plasticity in the plant size than that from other provenances under drought. The variations may be used as criteria for variety/provenance selection and improvement of J. curcas performance., C. Y. Yin, X. Y. Pang, A. D. Peuke, X. Wang, K. Chen, R. G. Gong., and Seznam literatury
Diurnal patterns of gas exchange and chlorophyll (Chl) fluorescence parameters of photosystem 2 (PS2) as well as H2O2 content were analyzed in Reaumuria soongorica (Pall.) Maxim., a perennial semi-shrub. The rate of photorespiration was estimated by combined measurement of gas exchange and Chl fluorescence. The rate of photorespiration increased with the increasing drought stress (DS). The ratio of carboxylation electron flow to oxygenation electron flow (Jc/Jo) and the maximal photochemical efficiency of PS2 (variable to maximum fluorescence ratio, Fv/Fm) decreased with the increasing DS. Fv/Fm in isonicotinic acid hydrazide (INH)-sprayed plants was lower than that in normal plants under moderate DS, but no significant difference was observed under severe DS. H2O2 content in INH-sprayed plants was significantly lower than that in normal plants under severe DS. Taken together, photorespiration in R. soongorica consumed excess electrons and protected photosynthetic apparatus under moderate DS, whereas it accelerated H2O2 accumulation markedly and induced the leaf abscission under severe DS. and J. Bai ... [et al.].