Ischemic preconditioning (IP) protects the heart against subsequent prolonged ischemia. Whether the β-adrenoceptor/adenylate cyclase pathway contributes to this cardioprotection is not yet fully known. Using enzyme catalytic cytochemistry we studied the adenylate cyclase activity and its distribution in the preconditioned rat heart. Adenylate cyclase activity was examined in Langendorff-perfused rat hearts subjected to the following conditions: control perfusion; 30 min regional ischemia; 5 min occlusion and 10 min reperfusion (IP); IP followed by ischemia. Ischemia-induced arrhythmias and the effect of ischemic preconditioning on the incidence of arrhythmias were analyzed. At the end of experiment the heart was shortly prefixed with glutaraldehyde. Tissue samples from the left ventricle were incubated in a medium containing the specific substate AMP-PNP for adenylate cyclase and then routinely processed for electron microscopy. Adenylate cyclase activity was cytochemically demonstrated in the sarcolemma and the junctional sarcoplasmic reliculum (JSR) in control hearts, while it was absent after test ischemia. The highest activity of the precipitate was observed after ischemic preconditioning. In the preconditioned hearts followed by test ischemia, adenylate cyclase activity in the precipitate was preserved in sarcolemma and even more in JSR. Protective effect of ischemic preconditioning was manifested by the suppression of severe arrhythmias. These rresults indicate the involvement of the adenylate cyclase system in mechanisms underlying ischemic preconditioning., Ľ. Okruhlicová, T. Ravingerová, D. Pancza, N. Tribulová, J. Styk, R. Štetka., and Obsahuje bibliografii
Diabetic heart is suggested to exhibit either increased or decreased resistance to ischemic injury. Ischemic preconditioning suppresses arrhythmias in the normal heart, whereas relatively little is known about its effects in the diseased myocardium. Our objective was to investigate whether development of diabetes mellitus modifies the susceptibility to ischemia-induced arrhythmias and affects preconditioning in the rat heart. Following 1 and 9 weeks of streptozotocin-induced (45 mg/kg, i.v.) diabetes, the hearts were Langendorff-perfused at constant pressure of 70 mm Hg and subjected to test ischemia induced by 30 min occlusion of the left anterior descending (LAD) coronary artery. Preconditioning consisted of one cycle of 5 min ischemia and 10 min reperfusion, prior to test ischemia. Susceptibility to ischemia-induced arrhythmias was lower in 1-week diabetics: only 42 % of diabetic hearts exhibited ventricular tachycardia (VT) and 16 % had short episodes of ventricular fibrillation (VF) as compared to VT 100 % and VF 70 % (including sustained VF 36 %) in the non-diabetics (P<0.05). Development of the disease was associated with an increased incidence of VT (VT 92 %, not significantly different from non-diabetics) and longer total duration of VT and VF at 9-weeks, as compared to 1-week diabetics. Preconditioning effectively suppressed arrhythmias in the normal hearts (VT 33 %, VF 0 %). However, it did not provide any additional antiarrhythmic protection in the acute diabetes. On the other hand, in the preconditioned 9-weeks diabetic hearts, the incidence of arrhythmias tended to decrease (VT 50 %, transient VF 10 %) and their severity was reduced. Diabetic rat hearts are thus less susceptible to ischemia-induced arrhythmias in the acute phase of the disease. Development of diabetes attenuates increased ischemic tolerance, however, diabetic hearts in the chronic phase can benefit more from ischem preconditioning, due to its persisting influence., T. Ravingerová, R. Štetka, D. Pancza, O. Uličná, A. Ziegelhöffer, J. Styk., and Obsahuje bibliografii