The ATP-binding cassette (ABC) superfamily of active transporters involves a large number of functionally diverse transmembrane proteins. They transport a variety of substrates including amino acids, lipids, inorganic ions, peptides, saccharides, metals, drugs, and proteins. The ABC transporters not only move a variety of substrates into and out of the cell, but also are also involved in intracellular compartmental transport. Energy derived from the hydrolysis of ATP is used to transport the substrate across the membrane against a concentration gradient. The typical ABC transporter consists of two transmembrane domains and two nucleotide-binding domains. Defects in 14 of these transporters cause 13 genetic diseases (cystic fibrosis, Stargardt disease, adrenoleukodystrophy, Tangier disease, etc.). Mutations in three genes affect lipid levels expressively. Mutations in ABCA1 cause severe HDL deficiency syndromes called Tangier disease and familial high-density lipoprotein deficiency, which are characterized by a severe deficiency or absence of high-density lipoprotein in the plasma. Two other ABCG transporters, ABCG5 and ABCG8, mutations of which cause sitosterolemia, have been identified. The affected individuals absorb and retain plant sterols, as well as shellfish sterols.
ABCG5 and ABCG8 transporters play an important role in the absorption and excretion of sterols. Missence polymorphisms (Gln604Glu in the ABCG5 and Asp19His, Tyr54Cys, Thr400Lys, and Ala632Val in the ABCG8) in these genes have been described. In 131 males and 154 females whose dietary composition markedly changed and lipid parameters decreased over an 8-year follow-up study (total cholesterol decreased from 6.21±1.31 mmol/l in 1988 to 5.43±1.06 mmol/l in 1996), these polymorphisms were investigated using PCR. Plasma lipid levels and changes in plasma lipid levels were independent of the Gln604Glu polymorphism in ABCG5 and Asp19His and the Ala632Val polymorphisms in ABCG8. The Tyr54Cys polymorphism influenced the degree of reduction in total plasma cholesterol (D –0.49 mmol/l in Tyr54 homozygotes vs. D +0.12 mmol/l in Cys54 homozygotes, p<0.04) and LDL-cholesterol (D –0.57 mmol/l in Tyr54 homozygotes vs. D +0.04 mmol/l in Cys54 homozygotes, p<0.03) levels between 1988 and 1996 in females, but not in males. Male Thr400 homozygotes exhibited a greater decrease in total cholesterol (D –0.90 mmol/l vs. D –0.30 mmol/l, p<0.02) and LDL-cholesterol (D –0.62 mmol/l vs. D –0.19 mmol/l, p<0.04) than Lys400 carriers. No such association was observed in females. We conclude that Tyr54Cys and Thr400Lys variations in the ABCG8 gene may play a role in the genetic determination of plasma cholesterol levels and could possibly influence the gender-specific response of plasma cholesterol levels after dietary changes. These polymorphisms are of potential interest as genetic variants that may influence the lipid profile.