Soil water repellency (SWR) reduces the rates of wetting in dry soils and is known to interfere with water movement into as well as within the soils. The objective of this study was to investigate the hydrophysical characteristics of three water-repellent tropical exotic plantation forest soils in wet and dry seasons. The study sites were Eucalyptus grandis (EG), Pinus caribaea (PC), and Casuarina equisetifolia (CE) plantation forest soils located in the up-country intermediate zone (EG and PC), and low-country dry zone (CE). Field experiments were conducted to measure the infiltration rate, unsaturated hydraulic conductivity (k), water sorptivity (SW). Laboratory experiments were conducted to measure the potential SWR and water entry value (hwe). All three soils showed higher SWR in the dry season, where CE soils showed the highest. The EG soils showed the highest SWR in the wet season. Although SWR in all soils decreased with increasing depth in the wet season, only CE soils showed a significant decrease in SWR with soil depth in the dry season. Compared with the wet season, the k (–1 cm) was lower and hwe was higher in the dry season. However, SW did not show a significant difference between wet and dry seasons. Initial infiltration rate and k (–1 cm) showed a negative correlation with contact angle in all three soils. Soils showed positive linear correlations between k (–1 cm) and SW, and negative linear correlations between SW and hwe showing that surface water absorption is related to both subsurface unsaturated water flow and surface water entry pressure. It was clear that the water entry into soils and the subsurface water flow were hindered by the SWR. High water entry values in the dry season predict high potentials for intensified surface runoff and topsoil erosion. Future research will be required on the interactions between soil biology and soil properties such as pore structure that would influence water flow into and within soils.
Joint immobilization is frequently administered after fractures and ligament injuries and can cause joint contracture as a side effect. The structures responsible for immobilization-induced joint contracture can be roughly divided into muscular and articular. During remobilization, although myogenic contracture recovers spontaneously, arthrogenic contracture is irreversible or deteriorates further. Immediately after remobilization, an inflammatory response is observed, characterized by joint swelling, deposit formation in the joint space, edema, inflammatory cell infiltration, and the upregulation of genes encoding proinflammatory cytokines in the joint capsule. Subsequently, fibrosis in the joint capsule develops, in parallel with progressing arthrogenic contracture. The triggers of remobilization-induced joint inflammation are not fully understood, but two potential mechanisms are proposed: 1) micro-damage induced by mechanical stress in the joint capsule, and 2) nitric oxide (NO) production via NO synthase 2. Some interventions can modulate remobilization-induced inflammatory and subsequent fibrotic reactions. Antiinflammatory treatments, such as steroidal anti-inflammatory drugs and low-level laser therapy, can attenuate joint capsule fibrosis and the progression of arthrogenic contracture in remobilized joints. Antiproliferative treatment using the cellproliferation inhibitor mitomycin C can also attenuate joint capsule fibrosis by inhibiting fibroblast proliferation without suppressing inflammation. Conversely, aggressive exercise during the early remobilization phases is counterproductive, because it facilitates inflammatory and then fibrotic reactions in the joint. However, the adverse effects of aggressive exercise on remobilization-induced inflammation and fibrosis are offset by anti-inflammatory treatment. To prevent the progression of arthrogenic contracture during remobilization, therefore, care should be taken to control inflammatory and fibrotic reactions in the joints.
We study the problem of existence of orbits connecting stationary points for the nonlinear heat and strongly damped wave equations being at resonance at infinity. The main difficulty lies in the fact that the problems may have no solutions for general nonlinearity. To address this question we introduce geometrical assumptions for the nonlinear term and use them to prove index formulas expressing the Conley index of associated semiflows. We also prove that the geometrical assumptions are generalizations of the well known Landesman-Lazer and strong resonance conditions. Obtained index formulas are used to derive criteria determining the existence of orbits connecting stationary points.
This paper is concerning with simulations of cavitation flow around the NACA 0015 hydrofoil. The problem is solved as the multi-phase and single-phase model of flow, for two different impact angles and for two different densities of computational net. The attention is focused on the comparison of single-phase and multi-phase results.
Influence of moderate chilling stress on vascular bundle sheath cell (BSC) and especially mesophyll cell (MC) chloroplasts of mature maize leaves was studied by electron microscopy and stereology. Plants of two inbred lines of maize, differing in their photosynthetic activity, and their F1 hybrids were cultivated during autumn in heated or unheated glasshouse. Generally, chilling temperatures resulted mainly in the decrease in stereological volume density (VD) of both granal and intergranal thylakoids of MC chloroplasts, while the ratio of granal to all thylakoids (granality) was less affected. The VD of peripheral reticulum and plastoglobuli usually increased after cold treatment of plants. The volume of MC chloroplasts usually increased under chilling stress, the shape of the chloroplasts changed only slightly. The ultra-structure of chloroplasts differed between individual genotypes; chilling-stressed hybrid plants showed positive heterosis particularly in the granal thylakoids' VD of MC chloroplasts. and J. Kutík ... [et al.].
The main results of this paper are that (1) a space $X$ is $g$-developable if and only if it is a weak-open $\pi $ image of a metric space, one consequence of the result being the correction of an error in the paper of Z. Li and S. Lin; (2) characterizations of weak-open compact images of metric spaces, which is another answer to a question in in the paper of Y. Ikeda, C. liu and Y. Tanaka.