A new version of the previously published corpus Chroma. The version 2023.04 includes six children. Two transcripts (Julie20221, Klara30424) were removed since they did not meet the criteria on the dialogical format. The transcripts were revised (eliminating typing errors and inconsistencies in the transcription format) and morphologically annotated by the automatic tool MorphoDiTa. Detailed manual control of the annotation was performed on children's utterances; the annotation of adult data was not checked yet. Files are in plain text with UTF-8 encoding. Each file represents one recording session of one of the target children and is named with the alias of the child and their age at the given session in form YMMDD. Transcription rules and other details can be found on the homepage coczefla.ff.cuni.cz.
A new version of the previously published corpus Chroma wih morphological annotation. The version 2023.07 differs from 2023.04 in that it includes all seven children and it went through an additional careful check of consistency and conformity to the CHAT transcription principles.
Two transcripts (Julie20221, Klara30424) from the previous versions (2022.07, 2019.07) were removed since they did not meet our criteria on dialogical format. All transcripts of recordings made during one day were split into one file. Thus, version 2023.07 consists of 183 files/transcripts. The number of utterances and tokens given here in LINDAT corresponds to children's lines only.
Files are in plain text with UTF-8 encoding. Each file represents one recording session of one of the target children and is named with the alias of the child and their age at the given session in form YMMDD. Transcription rules and other details can be found on the homepage coczefla.ff.cuni.cz.
The collection comprises the relevance judgments used in the 2023 LongEval Information Retrieval Lab (https://clef-longeval.github.io/), organized at CLEF. It consists of three sets of relevance judgments:
1) Relevance judgments for the heldout queries from the LongEval Train Collection (http://hdl.handle.net/11234/1-5010).
2) Relevance judgments for the short-term persistence (sub-task A) queries from the LongEval Test Collection (http://hdl.handle.net/11234/1-5139).
3) Relevance judgments for the long-term persistence (sub-task B) queries from the LongEval Test Collection (http://hdl.handle.net/11234/1-5139).
These judgments were provided by the Qwant search engine (https://www.qwant.com) and were generated using a click model. The click model output was based on the clicks of Qwant's users, but it mitigates noise from raw user clicks caused by positional bias and also better safeguards users' privacy. Consequently, it can serve as a reliable soft relevance estimate for evaluating and training models.
The collection includes a total of 1,420 judgments for the heldout queries, with 74 considered highly relevant and 326 deemed relevant. For the short-term sub-task queries, there are 12,217 judgments, including 762 highly relevant and 2,608 relevant ones. As for the long-term sub-task queries, there are 13,467 judgments, with 936 being highly relevant and 2,899 relevant.
The collection consists of queries and documents provided by the Qwant search Engine (https://www.qwant.com). The queries, which were issued by the users of Qwant, are based on the selected trending topics. The documents in the collection are the webpages which were selected with respect to these queries using the Qwant click model. Apart from the documents selected using this model, the collection also contains randomly selected documents from the Qwant index.
The collection serves as the official test collection for the 2023 LongEval Information Retrieval Lab (https://clef-longeval.github.io/) organised at CLEF. The collection contains test datasets for two organized sub-tasks: short-term persistence (sub-task A) and long-term persistence (sub-task B). The data for the short-term persistence sub-task was collected over July 2022 and this dataset contains 1,593,376 documents and 882 queries. The data for the long-term persistence sub-task was collected over September 2022 and this dataset consists of 1,081,334 documents and 923 queries. Apart from the original French versions of the webpages and queries, the collection also contains their translations into English.
The collection consists of queries and documents provided by the Qwant search Engine (https://www.qwant.com). The queries, which were issued by the users of Qwant, are based on the selected trending topics. The documents in the collection were selected with respect to these queries using the Qwant click model. Apart from the documents selected using this model, the collection also contains randomly selected documents from the Qwant index. All the data were collected over June 2022. In total, the collection contains 672 train queries, with corresponding 9656 assessments coming from the Qwant click model, and 98 heldout queries. The set of documents consist of 1,570,734 downloaded, cleaned and filtered Web Pages. Apart from their original French versions, the collection also contains translations of the webpages and queries into English. The collection serves as the official training collection for the 2023 LongEval Information Retrieval Lab (https://clef-longeval.github.io/) organised at CLEF.
The item contains a list of 2,058 noun/verb conversion pairs along with related formations (word-formation paradigms) provided with linguistic features, including semantic categories that characterize semantic relations between the noun and the verb in each conversion pair. Semantic categories were assigned manually by two human annotators based on a set of sentences containing the noun and the verb from individual conversion pairs. In addition to the list of paradigms, the item contains a set of 739 files (a separate file for each conversion pair) annotated by the annotators in parallel and a set of 2,058 files containing the final annotation, which is included in the list of paradigms.
The SynSemClass synonym verb lexicon version 5.0 is a multilingual resource that enriches previous editions of this event-type ontology with a new language, Spanish. The existing languages, English, Czech and German, are further substantially extended by a larger number of classes. SSC 5.0 data also contain lists (in a separate removed_cms.zip file) with originally (pre-)proposed but later rejected class members. All languages are organized into classes and have links to other lexical sources. In addition to the existing links, links to Spanish sources have been added.
The Spanish entries are linked to
ADESSE (http://adesse.uvigo.es/),
Spanish SenSem (http://grial.edu.es/sensem/lexico?idioma=en),
Spanish WordNet (https://adimen.si.ehu.es/cgi-bin/wei/public/wei.consult.perl),
AnCora (https://clic.ub.edu/corpus/en/ancoraverb_es), and
Spanish FrameNet (http://sfn.spanishfn.org/SFNreports.php).
The English entries are linked to
EngVallex (http://hdl.handle.net/11858/00-097C-0000-0023-4337-2),
CzEngVallex (http://hdl.handle.net/11234/1-1512),
FrameNet (https://framenet.icsi.berkeley.edu/)
VerbNet (https://uvi.colorado.edu/ and http://verbs.colorado.edu/verbnet/index.html),
PropBank (http://propbank.github.io/),
Ontonotes (http://clear.colorado.edu/compsem/index.php?page=lexicalresources&sub=ontonotes), and
English Wordnet (https://wordnet.princeton.edu/).
Czech entries are linked to
PDT-Vallex (http://hdl.handle.net/11858/00-097C-0000-0023-4338-F),
Vallex (http://hdl.handle.net/11234/1-3524), and
CzEngVallex (http://hdl.handle.net/11234/1-1512).
The German entries are linked to
Woxikon (https://synonyme.woxikon.de),
E-VALBU (https://grammis.ids-mannheim.de/verbvalenz), and
GUP (http://alanakbik.github.io/multilingual.html and https://github.com/UniversalDependencies/UD_German-GSD).
Ministerstvo školství, mládeže a tělovýchovy České republiky@@LM2018101@@LINDAT/CLARIAH-CZ: Digitální výzkumná infrastruktura pro jazykové technologie, umění a humanitní vědy@@nationalFunds@@✖[remove]7
Ministerstvo školství, mládeže a tělovýchovy České republiky@@LM2023062@@LINDAT/CLARIAH-CZ: Digitální výzkumná infrastruktura pro jazykové technologie, umění a humanitní vědy@@nationalFunds@@✖[remove]7