CD200 and its receptor were recognized as having the multiple immunoregulatory functions. Their immunoregulatory, suppressive, and tolerogenic potentials could be very effectively exploited in the treatment of many diseases, e.g. Alzheimer disease, rheumatoid arthritis, and allergy to name only some. Many research projects are aimed to develop clinically valuable methods being based on the structure and function of these paired molecules. In this review, we would like to introduce CD200/CD200R functions in a clinical context., Drahomíra Holmannová, Martina Koláčková, Kateřina Kondělková, Pavel Kuneš, Jan Krejsek, Ctirad Andrýs, and Literatura 51
CD200/CD200R are highly conserved type I paired membrane glycoproteins that belong to the Ig superfamily containing a two immunoglobulin‑like domain (V, C). CD200 is broadly distributed in a variety of cell types, whereas CD200R is primarily expressed in myeloid and lymphoid cells. They fulfill multiple functions in regulating inflammation. The interaction between CD200/CD200R results in activation of the intracellular inhibitory pathway with RasGAP recruitment and thus contributes to effector cell inhibition. It was confirmed that the CD200R activation stimulates the differentiation of T cells to the Treg subset, upregulates indoleamine 2,3‑dioxygenase activity, modulates cytokine environment from a Th1 to a Th2 pattern, and facilitates an antiinflammatory IL‑10 and TGF‑β synthesis. CD200/CD200R are required for maintaining self‑tolerance. Many studies have demonstrated the importance of CD200 in controlling autoimmunity, inflammation, the development and spread of cancer, hypersensitivity, and spontaneous fetal loss., Drahomíra Holmannová, Martina Koláčková, Kateřina Kondělková, Pavel Kuneš, Jan Krejsek, Ctirad Andrýs, and Literatura 46
Cardiac surgery is inseparably linked to the activation of innate immunity cells recognizing danger signals of both endogenous and exogenous origin via pattern recognition receptors such as TLR receptors. Therefore, we followed by flow cytometry TLR2 and TLR4 expression on blood monocytes and granulocytes of patients who underwent coronary artery bypass grafting using beating heart surgery (off-pump, n = 34), with use of standard cardiopulmonary bypass (CPB), (on-pump, n = 30), and miniinvasive CPB (mini on-pump, n = 25), respectively, before, during surgery, and up to 7th postoperative day. TLR2 and TLR4 expression both on monocytes and granulocytes was significantly diminished already at the end of CPB being highly significantly decreased at the end of surgery in all patients' groups. TLR2 and TLR4 expression reached preoperative value at the 1st postoperative day being significantly higher at the 3rd postoperative day. Using intracellular staining we found the peak of TLR2 and TLR4 expression inside of monocytes and granulocytes at the first postoperative day in a subgroup of on-pump patients. In conclusion, TLR2 and TLR4 expression is significantly modulated in patients undergoing coronary artery bypass grafting as a part of adaptive homeostatic mechanisms induced by major surgery. The very surgical trauma is responsible for TLR2 and TLR4 modulation. Surprisingly, cardiopulmonary bypass itself was little contributing to the modulation of TLR2 and TLR4 expression. and J. Krejsek, M. Kolácková, J. Mand'ák, P. Kunes, Z. Holubcová, D. Holmannová, M. AbuAttieh, C. Andrýs