Red wine polyphenols induce vasorelaxation via increased nitric oxide bioactivity
- Title:
- Red wine polyphenols induce vasorelaxation via increased nitric oxide bioactivity
- Creator:
- Zenebe, W., Oľga Pecháňová, and Ramaroson Andriantsitohaina
- Identifier:
- https://cdk.lib.cas.cz/client/handle/uuid:ee2a324f-d46d-48ca-9bfb-547c8c26b2ae
uuid:ee2a324f-d46d-48ca-9bfb-547c8c26b2ae
issn:0862-8408 - Subject:
- Fyziologie člověka a srovnávací fyziologie, oxid dusnatý, volné radikály, endotel, nitric oxide, free radicals, endothelium, red wine polyphenolic compounds, free oxygen radicals, femoral artery, 14, and 612
- Type:
- article, články, model:article, and TEXT
- Format:
- print, bez média, and svazek
- Description:
- The aim of the present study was to investigate the mechanism of vasorelaxant responses induced by red wine polyphenolic compounds (Provinol). Rings of rat femoral artery with or without functional endothelium were set up in a myograph for isometric recording and precontracted with phenylephrine (10-5 M). Provinol in cumulative doses (10-9 to 10-3 mg/ml) elicited endothelium- and dose-dependent relaxation of the artery with maximal relaxation of 56 % at the concentration of 10-5 mg/ml. The relaxant responses to Provinol correlated well with the increase of NO synthase activity in the vascular tissue after administration of cumulative doses of Provinol (10-9 to 10-3 mg/ml). NG-nitro-L-arginine methylester (L-NAME, 3x10-4 M) significantly attenuated the endothelium-dependent relaxation produced by Provinol. Administration of L-arginine (3x10-5 M) restored the relaxation inhibited by L-NAME. The relaxant responses of Provinol were abolished in the presence of Ca2+-entry blocker, verapamil (10-6 M). Administration of hydrogen peroxide (H2O2) abolished acetylcholine (10-5 M)-induced relaxation of the rat femoral artery, while administration of Provinol (10-5 mg/ml) together with H2O2 helped to maintain the acetylcholine-induced relaxation. Provinol only partially affected the concentration-response curve for the NO donor sodium nitroprusside-induced relaxation in rings without endothelium. In conclusion, Provinol elicited endothelium-dependent relaxation of rat femoral artery by the Ca2+-induced increase of NO synthase activity and by protecting NO from degradation., W. Zenebe, O. Pecháňová, R. Andriantsitohaina., and Obsahuje bibliografii
- Language:
- English
- Rights:
- http://creativecommons.org/licenses/by-nc-sa/4.0/
policy:public - Source:
- Physiological research | 2003 Volume:52 | Number:4
- Harvested from:
- CDK
- Metadata only:
- false
The item or associated files might be "in copyright"; review the provided rights metadata:
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- policy:public