Northern geometrid forest pests (Lepidoptera: Geometridae) hatch at lower temperatures than their southern conspecifics: Implications of climate change
- Title:
- Northern geometrid forest pests (Lepidoptera: Geometridae) hatch at lower temperatures than their southern conspecifics: Implications of climate change
- Creator:
- Fält-Nardmann, Julia, Klemola, Tero, Roth, Mechthild, Ruohomäki, Kai, and Saikkonen, Kari
- Identifier:
- https://cdk.lib.cas.cz/client/handle/uuid:6323e14e-15d5-4224-9f55-78f31d1a30c7
uuid:6323e14e-15d5-4224-9f55-78f31d1a30c7
issn:1210-5759
doi:10.14411/eje.2016.043 - Subject:
- Zoologie, motýli, píďalkovití, klimatické změny, líhnutí, fenologie, butterflies, Geometridae, climate changes, hatching, phenology, Evropa severní, Europe, Northern, Lepidoptera, Epirrita autumnata, Erannis defoliaria, Operophtera brumata, photoperiod, synchrony, temperature sum, 2, and 59
- Type:
- article, články, journal articles, model:article, and TEXT
- Format:
- print, počítač, and online zdroj
- Description:
- Climate change may facilitate shifts in the ranges and the spread of insect pests, but a warming climate may also affect herbivorous insects adversely if it disrupts the locally adapted synchrony between the phenology of insects and that of their host plant. The ability of a pest species to colonize new areas depends on its ability to adjust the timing of phenological events in its life cycle, particularly at high latitudes where there is marked seasonality in temperature and day length. Here we incubated eggs of three species of geometrid moth, Epirrita autumnata, Operophtera brumata and Erannis defoliaria from different geographical populations (E. autumnata and O. brumata from Northern Finland, E. autumnata and E. defoliaria from Southern Finland and all three species from Germany) in a climate chamber at a constant temperature to determine the relative importance of geographic origin in the timing of egg hatch measured in terms of cumulative temperature sums (degree days above 5°C, DD5); i.e. the relative importance of local adaptation versus phenotypic plasticity in the timing of egg hatch. In all three species, eggs from northern populations required a significantly lower temperature sum for hatching than eggs from southern populations, but the differences between them in temperature sum requirements varied considerably among species, with the differences being largest for the earliest hatching and northernmost species, E. autumnata, and smallest for the southern, late-hatching E. defoliaria. In addition, the difference in hatch timing between the E. autumnata eggs from Southern Finland and Germany was many times greater than the difference between the two Finnish populations of E. autumnata, despite the fact that the geographical distances between these populations is similar. We discuss how these differences in hatching time may be explained by the differences in hatch-budburst synchrony and its importance for different moth species and populations. We also briefly reflect on the significance of photoperiod, which is not affected by climate change. It is a controller that works parallel or in addition to temperature sum both for egg hatch in moths and bud burst of their host plants., Julia Fält-Nardmann, Tero Klemola, Mechthild Roth, Kai Ruohomäki, Kari Saikkonen., and Obsahuje bibliografii
- Language:
- English
- Rights:
- http://creativecommons.org/licenses/by-nc-sa/4.0/
policy:public - Source:
- European Journal of Entomology | 2016 Volume:113
- Harvested from:
- CDK
- Metadata only:
- false
The item or associated files might be "in copyright"; review the provided rights metadata:
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- policy:public