Cadmium is often detected in areas contaminated by heavy metals and the incidence of this element in dangerous concentrations has been increasing due to anthropogenic activities. The aim of this research was to determine Cd concentrations in tissues, quantify compounds, pigments and enzymes, and to evaluate the gas exchange. Our aim was also to identify components that can modify and contribute to tolerance of Cassia alata against Cd toxicity. We used five Cd concentrations (0, 22, 44, 88, and 132 μM) to validate our hypothesis. The Cd concentrations in tissues of C. alata plants increased significantly, compared with the control treatment, in the following graduated sequence: root > leaf > stem. Progressive enhancement in glutathione (GSH) was verified in plants treated with all Cd concentrations used, when compared with treatment without Cd. Antioxidant enzyme activities presented similar patterns with progressive enhancements, being a desirable characteristic for plants with a potential to hyperaccumulate Cd. Our results suggest that C. alata plants can be used for phytoremediation programs. Their defense mechanism is based on Cd accumulation in roots, coupled with increase in GSH and the efficient activity of antioxidant enzymes that contribute to minimize the oxidative stress and consequently improve the protection of the metabolic machinery., J. R. R. Silva, A. R. Fernandes, M. L. Silva Junior, C. R. C. Santos, A. K. S. Lobato., and Obsahuje bibliografii
Accumulation and distribution of zinc within Miscanthus x giganteus plants grown on elevated Zn concentrations and their photosynthetic performance were investigated. High concentrations of Zn in soils caused an increase of its concentrations in all plant organs. The bioconcentration factor, bioaccumulation factor, and translocation factor were lower than one indicating that M. x giganteus is an excluder plant species. Excessive Zn induced visible leaf damage, i.e. chlorosis and necrosis, only in the oldest leaves, pointing to Zn accumulation. Elevated amounts of Zn in leaves significantly lowered the photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2 concentrations, parameters of chlorophyll a fluorescence, and chlorophyll b content. Despite Zn excess in leaves, there was no severe reduction in the maximal quantum yield of PSII photochemistry, indicating a high photosynthetic capacity, high tolerance to elevated Zn concetrations, and ability of M. x giganteus to grow on Zn-contaminated soils., G. Andrejić, G. Gajić, M. Prica, Ž. Dželetović, T. Rakić., and Obsahuje bibliografii