Principal vasoactive systems - renin-angiotensin system (RAS), sympathetic nervous system (SNS), nitric oxide (NO) and prostanoids - exert their vascular effects through the changes in calcium levels and/or calcium sensitization. To estimate a possible modulation of calcium sensitization by the above vasoactive systems, we studied the influence of acute and chronic blockade of particular vasoactive systems on blood pressure (BP) changes elicited in conscious normotensive rats by acute dose-dependent administration of Rho-kinase inhibitor fasudil. Adult male chronically cannulated Wistar rats were used throughout this study. The acute inhibition of NO synthase (NOS) by L-NAME enhanced BP response to fasudil, the effect being considerably augmented in rats deprived of endogenous SNS. The acute inhibition of prostanoid synthesis by indomethacin modified BP response to fasudil less than the acute NOS inhibition. The chronic NOS inhibition caused moderate BP elevation and a more pronounced augmentation of fasudilinduced BP changes compared to the effect of acute NOS inhibition. This indicates both short-term and long-term NOdependent attenuation of calcium sensitization. Long-term inhibition of RAS by captopril caused a significant attenuation of BP changes elicited by fasudil. In contrast, a long-term attenuation of SNS by chronic guanethidine treatment (in youth or adulthood) had no effect on BP response to fasudil, suggesting the absence of SNS does not affect calcium sensitization in vascular smooth muscle of normotensive rats. In conclusion, renin-angiotensin system contributes to the long-term increase of calcium sensitization and its effect is counterbalanced by nitric oxide which decreases calcium sensitization in Wistar rats., A. Brunová, M. Bencze, M. Behuliak, J. Zicha., and Obsahuje bibliografii
The vessels on the fetal side of the placenta differ from most other vascular beds except the lungs in that they respond to acute hypoxia by vasoconstriction. An essential role of calcium influx in the mechanism of this hypoxic fetoplacental vasoconstriction (HFPV) has been shown previously. That finding does not, however, exclude the possible involvement of other mechanisms of vascular tone regulation. In this study we tested the hypothesis that Rho-kinase-mediated calcium sensitization is involved in HFPV. We used a model of isolated rat placenta dually perfused (from both the maternal and fetal side) with Krebs salt solution saturated with normoxic and hypoxic gas mixture respectively at constant flow rate. Rho-kinase pathway was inhibited by fasudil (10 μM). We found that fasudil reduced basal normoxic fetoplacental vascular resistance and completely prevented HFPV. This suggests that the activity of Rho-kinase signaling pathway is essential for HFPV., P. Kafka, ... [et al.]., and Obsahuje seznam literatury
ncreased systemic vascular resistance is responsible for blood pressure (BP) elevation in most forms of human or experimental hypertension. The enhanced contractility of structurally remodeled resistance arterioles is mediated by enhanced calcium entry (through L type voltagedependent calcium channels - L-VDCC) and/or augmented calcium sensitization (mediated by RhoA/Rho kinase pathway). It is rather difficult to evaluate separately the role of these two pathways in BP control because BP response to the blockade of either pathway is always dependent on the concomitant activity of the complementary pathway. Moreover, vasoconstrictor systems enhance the activity of both pathways, while vasodilators attenuate them. The basal fasudil-sensitive calcium sensitization determined in rats deprived of endogenous renin-angiotensi n system (RAS) and sympathetic nervous system (SNS) in wh ich calcium entry was dose- dependently increased by L-VDCC opener BAY K8644, is smaller in spontaneously hypertensive rats (SHR) than in normotensive Wistar-Kyoto (WKY) rats. In co ntrast, if endogenous RAS and SNS were present in intact rats, fasudil caused a greater BP fall in SHR than WKY rats. Our in vivo experiments indicated that the endogenous pressor systems (RAS and SNS) augment calcium sensitization mediated by RhoA/Rho kinase pathway, whereas the endogenous vasodilator systems (such as nitric oxide) attenuate this pathway. However, the modulation of calcium entry and calcium sensitization by nitric oxide is strain-dependent because NO deficiency significan tly augments low calcium entry in WKY and low calcium sensitization in SHR. Further in vivo and in vitro experiments should clarify the interrelationships between endogenous vasoactive systems an d the contribution of calcium entry and/or calcium sensitization to BP maintenance in various forms of experimental hypertension., J. Zicha ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy